

    
      
          
            
  [image: _images/logo-large.png]









[image: https://circleci.com/gh/SpectoLabs/hoverfly.svg?style=shield]
 [https://circleci.com/gh/SpectoLabs/hoverfly][image: https://badges.gitter.im/SpectoLabs/hoverfly.svg]
 [https://gitter.im/SpectoLabs/hoverfly]






What is Hoverfly?

Hoverfly is a lightweight, open source API simulation tool. Using Hoverfly, you can create realistic simulations of the APIs your application depends on.


	Replace slow, flaky API dependencies with realistic, re-usable simulations

	Simulate network latency, random failures or rate limits to test edge-cases

	Extend and customize with any programming language

	Export, share, edit and import API simulations

	CLI and native language bindings for Java [http://docs.hoverfly.io/projects/hoverfly-java] and Python [http://docs.hoverfly.io/projects/hoverpy/]

	REST API

	Lightweight, high-performance, run anywhere

	Apache 2 license




Source

The Hoverfly source code is available on GitHub [https://github.com/SpectoLabs/hoverfly].

Hoverfly is developed and maintained by SpectoLabs [https://specto.io].




Contents



	Introduction
	Motivation

	Download and installation

	Getting Started





	Key Concepts
	Hoverfly as a proxy server

	Hoverfly as a webserver

	Hoverfly modes

	Simulations

	Matching strategies

	Caching

	Templating

	State

	Destination filtering

	Middleware

	Hoverctl





	Native language bindings
	HoverPy

	Hoverfly Java





	Tutorials
	Basic tutorials

	Advanced tutorials





	Troubleshooting
	Why isn’t Hoverfly matching my request?

	Why isn’t Hoverfly returning the closest match when it cannot match a request?

	How can I view the Hoverfly logs?

	Why does my simulation have a deprecatedQuery field?

	Why am I not able to access my Hoverfly remotely?

	My simulation file is very large because of response bodies, what can I do with that?





	Reference
	hoverctl commands

	Hoverfly commands

	Request matchers

	REST API

	Simulation schema





	Contributing
	Building, running & testing





	Community











          

      

      

    

  

    
      
          
            
  
Introduction



	Motivation

	Download and installation
	Homebrew (MacOS)

	Docker

	Kubernetes





	Getting Started









          

      

      

    

  

    
      
          
            
  
Motivation

Developing and testing interdependent applications is difficult. Maybe you’re working on a mobile application that needs to talk to a legacy API. Or a microservice that relies on two other services that are still in development.

The problem is the same: how do you develop and test against external dependencies which you cannot control?

You could use mocking libraries as substitutes for external dependencies. But mocks are intrusive, and do not allow you to test all the way to the architectural boundary of your application.

Stubbed services are better, but they often involve too much configuration or may not be transparent to your application.

Then there is the problem of managing test data. Often, to write proper tests, you need fine-grained control over the data in your mocks or stubs. Managing test data across large projects with multiple teams introduces bottlenecks that impact delivery times.

Integration testing “over the wire” is problematic too. When stubs or mocks are swapped out for real services (in a continuous integration environment for example) new variables are introduced. Network latency and random outages can cause integration tests to fail unexpectedly.

Hoverfly was designed to provide you with the means to create your own “dependency sandbox”: a simulated development and test environment that you control.

Hoverfly grew out of an effort to build “the smallest service virtualization tool possible”.





          

      

      

    

  

    
      
          
            
  
Download and installation

Hoverfly comes with a command line interface called hoverctl. Archives containing the Hoverfly and hoverctl binaries are available for the major operating systems and architectures.


	MacOS 64bit [https://github.com/SpectoLabs/hoverfly/releases/download/v1.4.0/hoverfly_bundle_OSX_amd64.zip]

	Linux 32bit [https://github.com/SpectoLabs/hoverfly/releases/download/v1.4.0/hoverfly_bundle_linux_386.zip]

	Linux 64bit [https://github.com/SpectoLabs/hoverfly/releases/download/v1.4.0/hoverfly_bundle_linux_amd64.zip]

	Windows 32bit [https://github.com/SpectoLabs/hoverfly/releases/download/v1.4.0/hoverfly_bundle_windows_386.zip]

	Windows 64bit [https://github.com/SpectoLabs/hoverfly/releases/download/v1.4.0/hoverfly_bundle_windows_amd64.zip]



Download the correct archive, extract the binaries and place them in a directory on your PATH.


Homebrew (MacOS)

If you have homebrew [http://brew.sh/], you can install Hoverfly using the brew command.

brew install SpectoLabs/tap/hoverfly





To upgrade your existing hoverfly to the latest release:

brew upgrade hoverfly





To show which versions are installed in your machine:

brew list --versions hoverfly





You can switch to a previously installed version as well:

brew switch hoverfly <version>





To remove old versions :

brew cleanup hoverfly








Docker

If you have Docker [https://www.docker.com/], you can run Hoverfly using the docker command.

docker run -d -p 8888:8888 -p 8500:8500 spectolabs/hoverfly:latest





This will run the latest version of the Hoverfly Docker image [https://hub.docker.com/r/spectolabs/hoverfly/].

You can also pass Hoverfly configuration flags when starting with Docker. For example if you need to run Hoverfly in webserver mode:

docker run -d -p 8888:8888 -p 8500:8500 spectolabs/hoverfly:latest -webserver





This Docker image does not contain hoverctl. Our recommendation is to have hoverctl on your host machine and then
configure hoverctl to use the newly started Hoverfly Docker instance as a new target.


See also

For a tutorial of creating a new target in hoverctl, see Controlling a remote Hoverfly instance with hoverctl.






Kubernetes

You can use Helm [https://helm.sh/] to install Hoverfly directly to your Kubernetes cluster. Hoverfly chart is available from the
official Helm incubator repo.

Use helm repo add to add the incubator repo if you haven’t done so:

helm repo add incubator https://kubernetes-charts-incubator.storage.googleapis.com/





Here is the command for a basic Hoverfly installation with the default settings:

helm install incubator/hoverfly





The default installation create a ClusterIP type service, which makes it only reachable from within the cluster.

After the installation, you can use port forwarding to access the application on localhost:

kubectl port-forward $HOVERFLY_POD_NAME 8888 8500





You can find the HOVERFLY_POD_NAME by doing kubectl get pod

See more details on Helm Charts project [https://github.com/helm/charts/tree/master/incubator/hoverfly].







          

      

      

    

  

    
      
          
            
  
Getting Started


Note

It is recommended that you keep Hoverfly and hoverctl in the same directory. However if they are not in the same directory, hoverctl will look in the current directory for Hoverfly, then in other directories on the PATH.



Hoverfly is composed of two binaries: Hoverfly and hoverctl.

hoverctl is a command line tool that can be used to configure and control Hoverfly. It allows you to run Hoverfly as a daemon.

Hoverfly is the application that does the bulk of the work. It provides the proxy server or webserver, and the API endpoints.

Once you have extracted both Hoverfly and hoverctl into a directory on your PATH, you can run hoverctl and Hoverfly.

hoverctl version
hoverfly -version





Both of these commands should return a version number. Now you can run an instance of Hoverfly:

hoverctl start





Check whether Hoverfly is running with the following command:

hoverctl logs





The logs should contain the string serving proxy. This indicates that Hoverfly is running.

Finally, stop Hoverfly with:

hoverctl stop









          

      

      

    

  

    
      
          
            
  
Key Concepts

Hoverfly’s functionality is quite broad. You are encouraged to take the time to understand these key concepts before jumping into the Tutorials.



	Hoverfly as a proxy server
	Using a proxy server

	The difference between a proxy server and a webserver





	Hoverfly as a webserver

	Hoverfly modes
	Capture mode

	Simulate mode

	Spy mode

	Synthesize mode

	Modify mode

	Diff mode





	Simulations
	Request Responses Pairs

	Delays

	Meta





	Matching strategies
	Strongest Match

	First Match





	Caching
	Caching matches

	Caches misses

	Header caching

	Eager caching

	Cache invalidation





	Templating
	Enabling Templating

	Faker (NEW)

	Getting data from the request

	Helper Methods





	State
	Setting State when Performing a Match

	Requiring State in order to Match

	Managing state via Hoverctl

	Sequences





	Destination filtering

	Middleware
	Local Middleware

	HTTP Middleware

	Middleware Interface





	Hoverctl









          

      

      

    

  

    
      
          
            
  
Hoverfly as a proxy server

A proxy server passes requests between a client and server.


[image: ../../_images/proxyserver.mermaid.png]


It is sometimes necessary to use a proxy server to reach a network (as a security measure, for example).
Because of this, all network-enabled software can be configured to use a proxy server.

The relationship between clients and servers via a proxy server can be one-to-one, one-to-many,
many-to-one, or many-to-many.


[image: ../../_images/proxyconfigs.mermaid.png]


By default Hoverfly starts as a proxy server.


Using a proxy server

Applications can usually be configured to use a proxy server by setting environment variables:

export HTTP_PROXY="http://proxy-address:port"
export HTTPS_PROXY="https://proxy-address:port"





Launching network-enabled software within an environment containing these variables should make the application use the specified proxy server. The term should is used as not all software respects these environment variables for security reasons.

Alternatively, applications themselves can usually be configured to use a proxy. Curl [https://curl.haxx.se/] can be configured to use a proxy via flags.

curl http://hoverfly.io --proxy http://proxy-ip:port






Note

The proxy configuration methods described here are intended to help you use the code examples in this documentation. The method of configuring an application or operating system to use a proxy varies depending on the environment.



	Windows Proxy Settings Explained [https://www.securelink.be/windows-proxy-settings-explained/]

	Firefox Proxy Settings [https://support.mozilla.org/en-US/kb/advanced-panel-settings-in-firefox#w_connection]











The difference between a proxy server and a webserver

A proxy server is a type of webserver. The main difference is that when a webserver receives a request from a client, it is expected to respond with whatever the intended response is (an HTML page, for example). The data it responds with is generally expected to reside on that server, or within the same network.

A proxy server is expected to pass the incoming request on to another server (the “destination”). It is also expected to set some appropriate headers along the way, such as X-Forwarded-For [https://en.wikipedia.org/wiki/X-Forwarded-For], X-Real-IP [https://en.wikipedia.org/wiki/X-Real-IP], X-Forwarded-Proto [https://en.wikipedia.org/wiki/X-Forwarded-Proto] etc. Once the proxy server receives a response from the destination, it is expected to pass it back to the client.







          

      

      

    

  

    
      
          
            
  
Hoverfly as a webserver

Sometimes you may not be able to configure your client to use a proxy, or you may want to explicitly point your application at Hoverfly. For this reason, Hoverfly can run as a webserver.


[image: ../../_images/webserver.mermaid.png]



Note

When running as a webserver, Hoverfly cannot capture traffic (see Capture mode) - it can only be used to simulate and synthesize APIs (see Simulate mode and Synthesize mode). For this reason, when you use Hoverfly as a webserver, you should have Hoverfly simulations ready to be loaded.



When running as a webserver, Hoverfly strips the domain from the endpoint URL. For example, if you made requests to the following URL while capturing traffic with Hoverfly running as a proxy:

http://echo.jsontest.com/key/value





And Hoverfly is running in simulate mode as a webserver on:

http://localhost:8888





Then the URL you would use to retrieve the data from Hoverfly would be:

http://localhost:8500/key/value






See also

Please refer to the Running Hoverfly as a webserver tutorial for a step-by-step example.







          

      

      

    

  

    
      
          
            
  
Hoverfly modes

Hoverfly has six different modes. It can only run in one mode at any one time.



	Capture mode

	Simulate mode

	Spy mode

	Synthesize mode

	Modify mode

	Diff mode









          

      

      

    

  

    
      
          
            
  
Capture mode

Capture mode is used for creating API simulations.


Note

Hoverfly cannot be set to Capture mode when running as a webserver (see Hoverfly as a webserver).




[image: ../../../_images/capture.mermaid.png]


In Capture mode, Hoverfly (running as a proxy server - see Hoverfly as a proxy server) intercepts communication
between the client application and the external service. It transparently records outgoing requests from
the client and the incoming responses from the service API.

Most commonly, requests to the external service API are triggered by running automated tests against the
application that consumes the API. During subsequent test runs, Hoverfly can be set to run in
Simulate mode, removing the dependency on the real external service API. Alternatively, requests
can be generated using a manual process.

Usually, Capture mode is used as the starting point in the process of creating an API simulation. Captured
data is then exported and modified before being re-imported into Hoverfly for use as a simulation.

By default, Hoverfly will ignore duplicate requests if the request has not changed. This can be a problem
when trying to capture a stateful endpoint that may return a different response each time you make a request.


	Using the stateful mode argument when setting Hoverfly to capture mode will disable the duplicate request check,

	enabling you to capture sequences of responses and play them back in Simulate mode in order.




See also

This functionality is best understood via a practical example: see Capturing a stateful sequence of responses in the Tutorials section.







          

      

      

    

  

    
      
          
            
  
Simulate mode

In this mode, Hoverfly uses its simulation data in order to simulate external APIs. Each time Hoverfly receives a request,
rather than forwarding it on to the real API, it will respond instead. No network traffic will ever reach the real external API.


[image: ../../../_images/simulate.mermaid.png]


The simulation can be produced automatically via by running Hoverfly in Capture mode, or created manually. See Simulations for information.





          

      

      

    

  

    
      
          
            
  
Spy mode

In this mode, Hoverfly simulates external APIs if a request match is found in simulation data (See Simulate mode),
otherwise, the request will be passed through to the real API.





          

      

      

    

  

    
      
          
            
  
Synthesize mode

This mode is similar to Simulate mode, but instead of looking for a response in stored simulation data, the request is passed directly to a user-supplied executable file. These files are known as Middleware.


[image: ../../../_images/synthesize.mermaid.png]


In Synthesize mode, the middleware executable is expected to generate a response to the incoming request “on the fly”. Hoverfly will then return the generated response to the application. For Hoverfly to operate in Synthesize mode, a middleware executable must be specified.


Note

You might use this mode to simulate an API that may be too difficult to record correctly via Capture mode. An example would be an API that uses state to change the responses. You could create middleware that manages this state and produces the desired response based on the data in the request.







          

      

      

    

  

    
      
          
            
  
Modify mode


Note

Hoverfly cannot be set to Modify mode when running as a webserver (see Hoverfly as a webserver).



Modify mode is similar to Capture mode, except it does not save the requests and responses.
In Modify mode, Hoverfly will pass each request to a Middleware executable before forwarding
it to the destination. Responses will also be passed to middleware before being returned to the client.


[image: ../../../_images/modify.mermaid.png]


You could use this mode to “man in the middle” your own requests and responses. For example, you could
change the API key you are using to authenticate against a third-party API.





          

      

      

    

  

    
      
          
            
  
Diff mode

In this mode, Hoverfly forwards a request to an external service and compares a response with currently stored simulation.
With both the stored simulation response and the real response from the external service, Hoverfly is able to detect
differences between the two. When Hoverfly has finished comparing the two responses, the difference is stored and the
incoming request is served the real response from the external service.

The differences can be retrieved from Hoverfly using the API (GET /api/v2/diff).
The response contains a list of differences, containing the request and the differences of the response.

{
  "diff": [{
    "request": {
      "method": "GET",
      "host": "time.jsontest.com",
      "path": "/",
      "query": ""
    },
    "diffReports": [{
      "timestamp": "2018-03-16T17:45:40Z",
      "diffEntries": [{
        "field": "header/X-Cloud-Trace-Context",
        "expected": "[ec6c455330b682c3038ba365ade6652a]",
        "actual": "[043c9bb2eafa1974bc09af654ef15dc3]"
      }, {
        "field": "header/Date",
        "expected": "[Fri, 16 Mar 2018 17:45:34 GMT]",
        "actual": "[Fri, 16 Mar 2018 17:45:41 GMT]"
      }, {
        "field": "body/time",
        "expected": "05:45:34 PM",
        "actual": "05:45:41 PM"
      }, {
        "field": "body/milliseconds_since_epoch",
        "expected": "1.521222334104e+12",
        "actual": "1.521222341017e+12"
      }]
    }]
  }]
}





This data is stored and kept until the Hoverfly instance is stopped or the the storage is cleaned by calling the API (DELETE /api/v2/diff).


See also

For more information on the API to retrieve differences, see REST API.







          

      

      

    

  

    
      
          
            
  
Simulations

The core functionality of Hoverfly is to capture HTTP(S) traffic to create API simulations which can be used in testing. Hoverfly stores captured traffic as simulations.

Simulation JSON can be exported, edited and imported in and out of Hoverfly, and can be shared among Hoverfly users or instances. Simulation JSON files must adhere to the Hoverfly Simulation schema.

Simulations consist of Request Matchers and Responses, Delays and Metadata (“Meta”).



	Request Responses Pairs
	Request Matchers

	Responses
	Binary data in responses

	Serving response bodies from files









	Delays

	Meta






See also

For a hands-on tutorial of creating and editing simulations, see Creating and exporting a simulation.







          

      

      

    

  

    
      
          
            
  
Request Responses Pairs

Hoverfly simulates APIs by matching incoming requests from the client to stored requests. Stored requests have an associated
stored response which is returned to the client if the match is successful.

The matching logic that Hoverfly uses to compare incoming requests with stored requests can be configured using Request Matchers.


Request Matchers

When Hoverfly captures a request, it creates a Request Matcher for each field in the request. A Request Matcher consists of
the request field name, the type of match which will be used to compare the field in the incoming request to the field in the stored
request, and the request field value.

By default, Hoverfly will set the type of match to exact for each field.


See also

There are many types of Request Matcher. Please refer to Request matchers for a list of the types available, and
examples of how to use them.

There alse are two different matching strategies: strongest match (default) and first match (legacy). Please refer to
Matching strategies for more information.



An example Request Matcher Set might look like this:








	Field
	Matcher Type
	Value




	scheme
	exact
	“https”


	method
	exact
	“GET”


	destination
	exact
	“docs.hoverfly.io”


	path
	exact
	“/pages/keyconcepts/templates.html”


	query
	exact
	“query=true”


	body
	exact
	“”


	headers
	exact
	 





In the Hoverfly simulation JSON file, this Request Matcher Set would be represented like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	            "request": {
               "path": [
                  {
                     "matcher": "exact",
                     "value": "/pages/keyconcepts/templates.html"
                  }
               ],
               "method": [
                  {
                     "matcher": "exact",
                     "value": "GET"
                  }
               ],
               "destination": [
                  {
                     "matcher": "exact",
                     "value": "docs.hoverfly.io"
                  }
               ],
               "scheme": [
                  {
                     "matcher": "exact",
                     "value": "http"
                  }
               ],
               "body": [
                  {
                     "matcher": "exact",
                     "value": ""
                  }
               ],
               "query": {
                  "query": [
                     {
                        "matcher": "exact",
                        "value": "true"
                     }
                  ]
               }
            },







View entire simulation file

The matching logic that Hoverfly uses to compare an incoming request to a stored request can be changed by editing the Request Matchers in the simulation
JSON file.

It is not necessary to have a Request Matcher for every request field. By omitting Request Matchers, it is possible to implement partial matching - meaning
that Hoverfly will return one stored response for multiple incoming requests.

For example, this Request Matcher will match any incoming request to the docs.hoverfly.io destination:

	1
2
3
4
5
6

	               "destination": [
                  {
                     "matcher": "exact",
                     "value": "docs.hoverfly.io"
                  }
               ]







View entire simulation file

In the example below, the globMatch Request Matcher type is used to match any subdomain of hoverfly.io:

	1
2
3
4
5
6

	               "destination": [
                  {
                     "matcher": "glob",
                     "value": "*.hoverfly.io"
                  }
               ]







View entire simulation file

It is also possible to use more than one Request Matcher for each field.

In the example below, a regexMatch and a globMatch are used on the destination field.

This will match on any subdomain of hoverfly.io which begins with the letter d. This means that
incoming requests to docs.hoverfly.io and dogs.hoverfly.io will be matched, but requests to
cats.hoverfly.io will not be matched.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	               "destination": [
                  {
                     "matcher": "glob",
                     "value": "*.hoverfly.io"
                  },
                  {
                     "matcher": "regex",
                     "value": "(\\Ad)"
                  }
               ]







View entire simulation file


See also

There are many types of Request Matcher. Please refer to Request matchers for a list of the types available, and
examples of how to use them.

For a practical example of how to use a Request Matcher, please refer to Loose request matching using a Request Matcher in the tutorials section.

There alse are two different matching strategies: strongest match (default) and first match (legacy). Please refer to
Matching strategies for more information.






Responses

Each Request Matcher Set has a response associated with is. If the request match is successful, Hoverfly will return the response to the client.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	            "response": {
               "status": 200,
               "body": "Response from docs.hoverfly.io/pages/keyconcepts/templates.html",
               "encodedBody": false,
               "headers": {
                  "Hoverfly": [
                     "Was-Here"
                  ]
               },
               "templated": false
            }







View entire simulation file

Editing the fields in response, combined with editing the Request Matcher set, makes it possible to configure complex request/response logic.


Binary data in responses

JSON is a text-based file format so it has no intrinsic support for binary data. Therefore if Hoverfly a response body contains binary data (images, gzipped, etc), the response body will be base64 encoded and the encodedBody field set to true.

	1
2

	               "body": "YmFzZTY0IGVuY29kZWQ=",
               "encodedBody": true,







View entire simulation file




Serving response bodies from files

Starting from version 1.3.0 hoverfly can return response body from a specific file:

"response": {
  "status": 200,
  "encodedBody": false,
  "templated": false,
  "bodyFile": "responses/200-success.json"
}





response/200-success.json is resolved against the directory specified in -response-body-files-path
which is your current working directory [https://en.wikipedia.org/wiki/Working_directory] by default.

When both body and bodyFile are specified, body takes precedence.

bodyFile is read into memory only on simulation import, not in runtime.

Reading response bodies sometimes might not be comfortable. Imagine a developer team that needs a single updating
“files provider”. Syncing to this provider can be a challenge and that’s why hoverfly supports downloading
response bodies from external urls:

"response": {
  "status": 200,
  "encodedBody": false,
  "templated": false,
  "bodyFile": "https://raw.githubusercontent.com/SpectoLabs/hoverfly/master/schema.json"
}





Like local files, this feature is supported only on simulation import. To escape security issues there’s another
mandatory option to specify -response-body-files-allow-origin that lets you explicitly set the collections of
urls to allow body files to be downloaded from. For the above to work you need to run hoverfly like this:

hoverfly -response-body-files-allow-origin="https://raw.githubusercontent.com/"













          

      

      

    

  

    
      
          
            
  
Delays

Once you have created a simulated service by capturing traffic between
your application and an external service, you may wish to make the
simulation more “realistic” by applying latency to the responses
returned by Hoverfly.

Hoverfly can be configured to apply delays to responses based on URL pattern matching or HTTP
method. This is done using a regular expression to match against the URL, a delay value in milliseconds,
and an optional HTTP method value.


See also

This functionality is best understood via a practical example: see Adding delays to a simulation in the Tutorials section.

You can use Log-normal distributions of delay for realistic delay.

You can also apply delays to simulations using Middleware (see the Using middleware to simulate network latency tutorial).
Using middleware to apply delays sacrifices performance for flexibility.







          

      

      

    

  

    
      
          
            
  
Meta

The last part of the simulation schema is the meta object. Its purpose is to store metadata that is relevant to your simulation. This includes the simulation schema version, the version of Hoverfly used to export the simulation and the date and time at which the simulation was exported.

	1
2
3
4
5

	   },
   "meta": {
      "schemaVersion": "v5.1",
      "hoverflyVersion": "v1.2.0",
      "timeExported": "2020-04-25T17:56:32+03:00"











          

      

      

    

  

    
      
          
            
  
Matching strategies

Hoverfly has two matching strategies. Each has advantages and trade-offs.


Note

In order to fully understand Hoverfly’s matching strategies, it is recommended that you read the Simulations section first.




Strongest Match

This is the default matching strategy for Hoverfly. If Hoverfly finds multiple Request Response Pairs that match
an incoming request, it will return the Response from the pair which has the highest matching score.

To set “strongest” as the matching strategy, simply run:

hoverctl mode simulate





Or to be explicit run:

hoverctl mode simulate --matching-strategy=strongest






Matching scores

This example shows how matching scores are calculated.

Let’s assume Hoverfly is running in simulate mode, and the simulation data contains four Request Responses Pairs. Each
Request Response Pair contains one or more Request Matchers.

Hoverfly then receives a GET request to the destination www.destination.com. The incoming request contains the following
fields.

Request







	Field
	Value




	method
	GET


	destination
	www.destination.com





Request Response Pair 1











	Field
	Matcher Type
	Value
	Score
	Total Score
	Matched?




	method
	exact
	DELETE
	+0
	1
	false


	destination
	exact
	www.destination.com
	+1





This pair contains two Request Matchers. The method value in the incoming request (GET) does not match
the value for the method matcher (DELETE). However the destination value does match.

This gives the Request Response Pair a total score of 1, but since one match failed, it
is treated as unmatched (Matched? = false).

Request Response Pair 2











	Field
	Matcher Type
	Value
	Score
	Total Score
	Matched?




	method
	exact
	GET
	+1
	1
	true





This pair contains one Request Matcher. The method value in the incoming request (GET) matches
the value for the method matcher. This gives the pair a total score of 1, and since no matches
failed, it is treated as matched.

Request Response Pair 3











	Field
	Matcher Type
	Value
	Score
	Total Score
	Matched?




	method
	exact
	GET
	+1
	2
	true


	destination
	exact
	www.destination.com
	+1





In this pair, the method and destination values in the incoming request both match the
corresponding Request Matcher values. This gives the pair a total score of 2, and it treated as matched.

Request Response Pair 4











	Field
	Matcher Type
	Value
	Score
	Total Score
	Matched?




	method
	exact
	GET
	+1
	1
	false


	destination
	exact
	www.miss.com
	+0





This pair is treated as unmatched because the destination matcher failed.

Request Response Pair 3 has the highest score, and is therefore the strongest match.

This means that Hoverfly will return the Response contained within Request Response Pair 3.


Note

When there are multiple matches all with the same score, Hoverfly will pick the last one in the simulation.



The strongest match strategy makes it much easier to identify why Hoverfly has not returned a Response to an incoming Request.
If Hoverfly is not able to match an incoming Request to a Request Response Pair, it will return the closest match. For more
information see Troubleshooting.

However, the additional logic required to calculate matching scores does affect Hoverfly’s performance.






First Match

First match is the alternative (legacy) mechanism of matching. There is no scoring, and Hoverfly simply returns the first
match it finds in the simulation data.

To set first match as the matching strategy, run:

hoverctl mode simulate --matching-strategy=first





The main advantage of this strategy is performance - although it makes debugging matching errors harder.







          

      

      

    

  

    
      
          
            
  
Caching

In Simulate mode, Hoverfly uses caching in order to retain strong performance characteristics, even in the
event of complex matching. The cache is a key-value store of request hashes (hash of all the request excluding headers) to responses.


Caching matches

When Hoverfly receives a request in simulate mode, it will first hash it and then look for it in the cache. If a cache entry
is found, it will send the cached response back to Hoverfly. If it is not found, it will look for a match in the list of
matchers. Whenever a new match is found, it will be added to the cache.




Caches misses

Hoverfly also caches misses. This means that repeating a request which was not matched will return a cached miss, avoiding
the need to perform matching. The closest miss is also cached, so Hoverfly will not lose any useful information about which
matchers came closest.




Header caching

Currently, headers are not included in the hash for a request. This is because headers tend to change across time and clients,
impacting ordinary and eager caching respectively.




Eager caching

The cache is automatically pre-populated whenever switching to simulate mode. This only works on certain matchers (such as matchers
where every field is an “exactMatch”), but it means the initial cache population does not happen during simulate mode.




Cache invalidation

Cache invalidation is a straightforward process in Hoverfly. It only occurs when a simulation is modified.







          

      

      

    

  

    
      
          
            
  
Templating

Hoverfly can build responses dynamically through templating. This is particularly useful when combined with loose matching, as it allows a single
matcher to represent an unlimited combination of responses.


Enabling Templating

By default templating is disabled. In order to enable it, set the templated field to true in the response of a simulation.




Faker (NEW)

Support for go-fakeit [https://github.com/brianvoe/gofakeit] was recently added in order to extend the templating capabilities of Hoverfly.
Faker covers many different test data requirements and it can be used within
Hoverfly templated responses by using the faker helper, followed by the faker type (e.g. Name, Email)
As an example, to generate a random fake name you can use the following expression:

{
    "body": "{\n  \"name\": \"{{faker 'Name'}}\"}"
}





Fakers that require arguments are currently not supported.




Getting data from the request

Currently, you can get the following data from request to the response via templating:









	Field
	Example
	Request
	Result




	Request scheme
	{{ Request.Scheme }}
	http://www.foo.com
	http


	Query parameter value
	{{ Request.QueryParam.myParam }}
	http://www.foo.com?myParam=bar
	bar


	Query parameter value (list)
	{{ Request.QueryParam.NameOfParameter.[1] }}
	http://www.foo.com?myParam=bar1&myParam=bar2
	bar2


	Path parameter value
	{{ Request.Path.[1] }}
	http://www.foo.com/zero/one/two
	one


	Method
	{{ Request.Method }}
	http://www.foo.com/zero/one/two
	GET


	jsonpath on body
	{{ Request.Body ‘jsonpath’ ‘$.id’ }}
	{ “id”: 123, “username”: “hoverfly” }
	123


	xpath on body
	{{ Request.Body ‘xpath’ ‘/root/id’ }}
	<root><id>123</id></root>
	123


	Header value
	{{ Request.Header.X-Header-Id }}
	{ “X-Header-Id”: [“bar”] }
	bar


	Header value (list)
	{{ Request.Header.X-Header-Id.[1] }}
	{ “X-Header-Id”: [“bar1”, “bar2”] }
	bar2


	State
	{{ State.basket }}
	State Store = {“basket”:”eggs”}
	eggs








Helper Methods

Additional data can come from helper methods. These are the ones Hoverfly currently support:








	Description
	Example
	Result




	The current date time with offset, in the given format.

For example:


	The current date time plus 1 day in unix timestamp

	The current date time in ISO 8601 format

	The current date time minus 1 day in custom format




	
	{{ now ‘1d’ ‘unix’ }}

	{{ now ‘’ ‘’ }}

	{{ now ‘-1d’ ‘2006-Jan-02’ }}




	
	1136300645

	2006-01-02T15:04:05Z

	2006-Jan-01






	A random string
	{{ randomString }}
	hGfclKjnmwcCds


	A random string with a specified length
	{{ randomStringLength 2 }}
	KC


	A random boolean
	{{ randomBoolean }}
	true


	A random integer
	{{ randomInteger }}
	42


	A random integer within a range
	{{ randomIntegerRange 1 10 }}
	7


	A random float
	{{ randomFloat }}
	42


	A random float within a range
	{{ randomFloatRange 1.0 10.0 }}
	7.4563213423


	A random email address
	{{ randomEmail }}
	LoriStewart@Photolist.com


	A random IPv4  address
	{{ randomIPv4 }}
	224.36.27.8


	A random IPv6  address
	{{ randomIPv6 }}
	41d7:daa0:6e97:6fce:411e:681:f86f:e557


	A random UUID
	{{ randomUuid }}
	7b791f3d-d7f4-4635-8ea1-99568d821562


	Replace all occurrences of the old value with the new

value in the target string


	{{ replace Request.Body ‘be’ ‘mock’ }}

(where Request.Body has the value of “to be or not to be”


	to mock or not to mock






Note


	The following helper methods will be deprecated, please use now helper for date time:

	
	iso8601DateTime

	iso8601DateTimePlusDays

	currentDateTime

	currentDateTimeAdd

	currentDateTimeSubtract










Time offset

When using template helper method now, time offset must be formatted using the following syntax.







	Shorthand
	Type




	ns
	Nanosecond


	us/µs
	Microsecond


	ms
	Millisecond


	s
	Second


	m
	Minute


	h
	Hour


	d
	Day


	y
	Year





Prefix an offset with - to subtract the duration from the current date time.




Example time offset







	5m
	5 minutes


	1h30m
	1 hour 5 minutes


	1y10d
	1 year 10 days








Date time formats

When using template helper method now, date time formats must follow the Golang syntax.
More can be found out here https://golang.org/pkg/time/#Parse




Example date time formats






	2006-01-02T15:04:05Z07:00


	Mon, 02 Jan 2006 15:04:05 MST


	Jan _2 15:04:05






Note

If you leave the format string empty, the default format to be used is ISO 8601 (2006-01-02T15:04:05Z07:00).

You can also get an UNIX timestamp by setting the format to:


	unix: UNIX timestamp in seconds

	epoch: UNIX timestamp in milliseconds








Conditional Templating, Looping and More

Hoverfly uses the https://github.com/aymerick/raymond library for templating, which is based on http://handlebarsjs.com/

To learn about more advanced templating functionality, such as looping and conditionals, read the documentation for these projects.









          

      

      

    

  

    
      
          
            
  
State

Hoverfly contains a map of keys and values which it uses to store it’s internal state. Some Request matchers can be made to only
match when Hoverfly is in a certain state, and other matchers can be set to mutate Hoverfly’s state.



	Setting State when Performing a Match

	Requiring State in order to Match

	Managing state via Hoverctl

	Sequences









          

      

      

    

  

    
      
          
            
  
Setting State when Performing a Match

A response includes two fields, transitionsState and removesState which alter Hoverflies internal state during a match:

"request": {
    "path": [
        {
            "matcher": "exact",
            "value": "/pay"
        }
    ]
},
"response": {
    "status": 200,
    "body": "eggs and large bacon",
    "transitionsState" : {
        "payment-flow" : "complete",
    },
    "removesState" : [
        "basket"
    ]
}





In the above case, the following changes to Hoverflies internal state would be made on a match:








	Current State of Hoverfly
	New State of Hoverfly?
	reason




	payment-flow=pending,basket=full
	payment-flow=complete
	Payment value transitions, basket deleted by key


	basket=full
	payment-flow=complete
	Payment value created, basket deleted by key


	 
	payment-flow=complete
	Payment value created, basket already absent









          

      

      

    

  

    
      
          
            
  
Requiring State in order to Match

A matcher can include a field requiresState, which dictates the state Hoverfly must be in for there to be a match:

"request": {
    "path": [
        {
            "matcher": "exact",
            "value": "/basket"
        }
    ]
    "requiresState": {
        "eggs": "present",
        "bacon" : "large"
    }
},
"response": {
    "status": 200,
    "body": "eggs and large bacon"
}





In the above case, the following matches results would occur when making a request to /basket:








	Current State of Hoverfly
	matches?
	reason




	eggs=present,bacon=large
	true
	Required and current state are equal


	eggs=present,bacon=large,f=x
	true
	Additional state ‘f=x’ is not used by this matcher


	eggs=present
	false
	Bacon is missing


	eggs=present,bacon=small
	false
	Bacon is has the wrong value









          

      

      

    

  

    
      
          
            
  
Managing state via Hoverctl

It could be tricky to reason about the current state of Hoverfly, or to get Hoverfly in a state that you desire for testing.
This is why Hoverctl comes with commands that let you orchestrate it’s state. Some useful commands are:

$ hoverctl state --help
$ hoverctl state get-all
$ hoverctl state get key
$ hoverctl state set key value
$ hoverctl state delete-all









          

      

      

    

  

    
      
          
            
  
Sequences

Using state, it is possible to recreate a sequence of different responses that may come back given a single request.
This can be useful when trying to test stateful endpoints.

When defining state for request response pairs, if you prefix your state key with the string sequence:, Hoverfly
will acknowledge the pair as being part of a stateful sequence. When simulating this sequence, Hoverfly will keep track
of the user’s position in the sequence and move them forwards.

Once Hoverfly has reached the end of the sequence, it will continue to return the final response.

{
  "data": {
    "pairs": [{
        "request": {
          "requiresState": {
            "sequence:1": "1"
          }
        },
        "response": {
          "status": 200,
          "body": "First response",
          "transitionsState": {
            "sequence:1": "2"
          }
        }
      },
      {
        "request": {
          "requiresState": {
            "sequence:1": "2"
          }
        },
        "response": {
          "status": 200,
          "body": "Second response"
        }
      }
    ]
  },
  "meta": {
    "schemaVersion": "v5.1"
  }
}









          

      

      

    

  

    
      
          
            
  
Destination filtering

By default, Hoverfly will process every request it receives. However, you may wish to control which URLs Hoverfly processes.

This is done by filtering the destination URLs using either a string or a regular expression. The destination string or regular expression will be compared against the host and the path of a URL.

For example, specifying hoverfly.io as the destination value will tell Hoverfly to process only URLs on the hoverfly.io host.

hoverctl destination "hoverfly.io"





Specifying api as the destination value during Capture mode will tell Hoverfly to capture only URLs that contain the string api. This would include both api.hoverfly.io/endpoint and hoverfly.io/api/endpoint.


See also

This functionality is best understood via a practical example: see Capturing or simulating specific URLs in the Tutorials section.




Note

The destination setting applies to all Hoverfly modes. If a destination value is set while Hoverfly is running in Simulate mode, requests that are excluded by the destination setting will be passed through to the real URLs. This makes it possible to return both real and simulated responses.







          

      

      

    

  

    
      
          
            
  
Middleware

Middleware intercepts traffic between the client and the API (whether real or simulated), and allowing you to manipulate it.

You can use middleware to manipulate data in simulated responses, or to inject unpredictable performance characteristics into your simulation.

Middleware works differently depending on the Hoverfly mode.


	Capture mode: middleware affects only outgoing requests

	Simulate/Spy mode: middleware affects only responses (cache contents remain untouched)

	Synthesize mode: middleware creates responses

	Modify mode: middleware affects requests and responses




Note

Middleware is applied after rendering the templating functions (see Templating) in the response body.



You can write middleware in any language. There are two different types of middleware.


Local Middleware

Hoverfly has the ability to invoke middleware by executing a script or binary file on a host operating system.
The only requires are that the provided middleware can be executed and sends the Middleware JSON schema to stdout
when the Middleware JSON schema is received on stdin.




HTTP Middleware

Hoverfly can also send middleware requests to a HTTP server instead of running a process locally. The benefits of this
are that Hoverfly does not initiate the process, giving more control to the user. The only requirements are that Hoverfly can
POST the Middleware JSON schema to middleware URL provided and the middleware HTTP server responses with a 200 and the
Middleware JSON schema is in the response.




Middleware Interface

When middleware is called by Hoverfly, it expects to receive and return JSON (see Simulation schema). Middleware can be used to modify the values in the JSON but must not modify the schema itself.


[image: ../../_images/middleware.mermaid.png]


Hoverfly will send the JSON object to middleware via the standard input stream. Hoverfly will then listen to the standard output stream and wait for the JSON object to be returned.


See also

Middleware examples are covered in the tutorials section. See Using middleware to simulate network latency and Using middleware to modify response payload and status code.









          

      

      

    

  

    
      
          
            
  
Hoverctl

Hoverctl is a command line utility that is shipped with Hoverfly. Its purpose is to make it easier to interact with Hoverfly APIs and your local filesystem, while also providing a way to start and stop instances of Hoverfly.

Hoverctl also has the ability to work with multiple instances of Hoverfly, through the use of the target option. Configuration is stored against each target meaning it is possible to start an instance of Hoverfly locally and remotely and still be able to interact with each separately.


See also

Please refer to hoverctl commands for more information about hoverctl.




See also

Please refer to the Controlling a remote Hoverfly instance with hoverctl tutorial for a step by step example of using targets.







          

      

      

    

  

    
      
          
            
  
Native language bindings

Native language bindings are available for Hoverfly to make it easy to integrate into different environments.



	HoverPy

	Hoverfly Java









          

      

      

    

  

    
      
          
            
  
HoverPy

To get started:

sudo pip install hoverpy
python





And in Python you can simply get started with:

import hoverpy
import requests

# capture mode
with hoverpy.HoverPy(capture=True) as hp:
    data = requests.get("http://time.jsontest.com/").json()

# simulation mode
with hoverpy.HoverPy() as hp:
    simData = requests.get("http://time.jsontest.com/").json()
    print(simData)

assert(data["milliseconds_since_epoch"] == simData["milliseconds_since_epoch"])





For more information, read the HoverPy documentation [https://hoverpy.readthedocs.io/en/latest/].





          

      

      

    

  

    
      
          
            
  
Hoverfly Java


	Strict or loose HTTP request matching based on URL, method, body and header combinations

	Fluent and expressive DSL for easy generation of simulated APIs

	Automatic marshalling of objects into JSON during request/response body generation

	HTTPS automatically supported, no extra configuration required

	Download via Maven or Gradle



To get started, read the Hoverfly Java documentation [https://hoverfly-java.readthedocs.io/en/latest/].





          

      

      

    

  

    
      
          
            
  
Tutorials

In these examples, we will use the hoverctl (CLI tool for Hoverfly) to interact with Hoverfly.

Hoverfly can also be controlled via its REST API, or via Native language bindings.



	Basic tutorials
	Creating and exporting a simulation

	Importing and using a simulation

	Adding delays to a simulation
	Applying a delay to all responses

	Applying a delay to specific responses

	Applying different delays based on host

	Applying different delays based on URI

	Applying different delays based on HTTP method

	Log-normal distributions of delay





	Loose request matching using a Request Matcher

	Using middleware to simulate network latency

	Using middleware to modify response payload and status code

	Simulating HTTPS APIs

	Running Hoverfly as a webserver

	Enable CORS support on Hoverfly

	Capturing or simulating specific URLs

	Capturing a stateful sequence of responses





	Advanced tutorials
	Using Hoverfly behind a proxy
	Configuring Hoverfly with a PAC file

	Upstream proxy authentication





	Controlling a remote Hoverfly instance with hoverctl

	Enabling authentication for the Hoverfly proxy and API
	Setting Hoverfly authentication credentials

	Logging in to a Hoverfly instance with hoverctl





	Configuring SSL in Hoverfly
	Override default certificate for one-way SSL authentication

	Configure Hoverfly for two-way SSL authentication

















          

      

      

    

  

    
      
          
            
  
Basic tutorials



	Creating and exporting a simulation

	Importing and using a simulation

	Adding delays to a simulation
	Applying a delay to all responses

	Applying a delay to specific responses

	Applying different delays based on host

	Applying different delays based on URI

	Applying different delays based on HTTP method

	Log-normal distributions of delay





	Loose request matching using a Request Matcher

	Using middleware to simulate network latency

	Using middleware to modify response payload and status code

	Simulating HTTPS APIs

	Running Hoverfly as a webserver

	Enable CORS support on Hoverfly

	Capturing or simulating specific URLs

	Capturing a stateful sequence of responses









          

      

      

    

  

    
      
          
            
  
Creating and exporting a simulation


Note

If you are running Hoverfly on a machine that accesses the internet via a proxy
(for example if you are on a corporate network), please follow the Using Hoverfly behind a proxy
tutorial before proceeding.



Start Hoverfly and set it to Capture mode

hoverctl start
hoverctl mode capture





Make a request with cURL, using Hoverfly as a proxy server:

curl --proxy http://localhost:8500 http://time.jsontest.com





View the Hoverfly logs

hoverctl logs





Export the simulation to a JSON file

hoverctl export simulation.json





Stop hoverfly

hoverctl stop





You’ll now see a simulation.json file in your current working directory, which contains all your simulation data.

In case you are curious, the sequence diagram for this process looks like this:


[image: ../../../../_images/exportingsimulations.mermaid.png]



Note

By default, request headers are not captured. If you want to capture headers, you will need to specify them when setting capture mode.

hoverctl mode capture --headers "User-Agent,Content-Type,Authorization"
hoverctl mode capture --all-headers








Note

It is possible to filter and export simulation to separate JSON files by providing a plain text or regex string to the --url-pattern flag:

hoverctl export echo.json --url-pattern "echo.jsontest.com"     // export simulations for echo.jsontest.com only
hoverctl export api.json --url-pattern "(.+).jsontest.com"      // export simulations for all jsontest.com subdomains











          

      

      

    

  

    
      
          
            
  
Importing and using a simulation

In this tutorial we are going to import the simulation we created in the previous tutorial.

hoverctl start
hoverctl import simulation.json





Hoverfly can also import simulation data that is stored on a remote host via HTTP:

hoverctl import https://example.com/example.json





Make a request with cURL, using Hoverfly as a proxy.

curl --proxy localhost:8500 http://time.jsontest.com





This outputs the time at the time the request was captured.

{
   "time": "02:07:28 PM",
   "milliseconds_since_epoch": 1482242848562,
   "date": "12-20-2016"
}





Stop Hoverfly:

hoverctl stop






Note

Importing multiple simulations:

The above example shows importing one simulation into Hoverfly. You can also import multiple simulations:

hoverctl simulation add foo.json bar.json





You can specify one or more simulations when starting Hoverfly using hoverfly or hoverctl commands:

hoverfly -import foo.json -import bar.json
hoverctl start --import foo.json --import bar.json





Hoverfly appends any unique pair to the existing simulation by comparing the equality of the request JSON objects.
If a conflict occurs, the pair is not added.







          

      

      

    

  

    
      
          
            
  
Adding delays to a simulation

Simulating API latency during development allows you to write code that will deal with it gracefully.

In Hoverfly, this is done by applying “delays” or “delaysLogNormal” to responses in a simulation.

Delays are applied by editing the Hoverfly simulation JSON file. Delays
can be applied selectively according to request URL pattern and/or HTTP method.



	Applying a delay to all responses

	Applying a delay to specific responses

	Applying different delays based on host

	Applying different delays based on URI

	Applying different delays based on HTTP method

	Log-normal distributions of delay









          

      

      

    

  

    
      
          
            
  
Applying a delay to all responses

Let’s apply a 2 second delay to all responses. First, we need to create and export a simulation.

hoverctl start
hoverctl mode capture
curl --proxy localhost:8500 http://time.jsontest.com
curl --proxy localhost:8500 http://date.jsontest.com
hoverctl export simulation.json
hoverctl stop





Take a look at the "globalActions" property within the simulation.json file you exported. It
should look like this:

	1
2
3

	      "globalActions": {
         "delays": [],
         "delaysLogNormal": []







Edit the file so the "globalActions" property looks like this:

	1
2
3
4
5
6
7
8
9

	      "globalActions": {
         "delays": [
            {
               "urlPattern": ".",
               "httpMethod": "",
               "delay": 2000
            }
         ],
         "delaysLogNormal": []







Hoverfly will apply a delay of 2000ms to all URLs that match the "urlPattern" value. We want
the delay to be applied to all URLs, so we set the "urlPattern" value to the regular expression ".".

Now import the edited simulation.json file, switch Hoverfly to Simulate mode and make the requests
again.

hoverctl start
hoverctl import simulation.json
curl --proxy localhost:8500 http://time.jsontest.com
curl --proxy localhost:8500 http://date.jsontest.com
hoverctl stop





The responses to both requests are delayed by 2 seconds.





          

      

      

    

  

    
      
          
            
  
Applying a delay to specific responses

When you want to add a delay to specific responses and global host / uri / http method matching is not the case,
you can specify fixedDelay in response. Here we apply a delay of 3000ms only to request /api/profile with
X-API-Version: v1 header:

{
    "request": {
        "path": [
            {"matcher": "exact", "value": "/api/profile"}
        ],
        "headers": {
            "X-API-Version": [
                {"matcher": "exact", "value": "v1"}
            ]
        }
    },
    "response": {
        "status": 404,
        "body": "Page not found",
        "fixedDelay": 3000
    }
}





It’s also possible to apply a logNormal delay:

{
    "request": {
        "path": [
            {"matcher": "exact", "value": "/api/profile"}
        ],
        "headers": {
            "X-API-Version": [
                {"matcher": "exact", "value": "v1"}
            ]
        }
    },
    "response": {
        "status": 404,
        "body": "Page not found",
        "logNormalDelay": {
            "min": 100,
            "max": 10000,
            "mean": 5000,
            "median": 500
        }
    }
}





Like global delays, when both fixedDelay and logNormalDelay are provided they are applied one after another.





          

      

      

    

  

    
      
          
            
  
Applying different delays based on host

Now let’s apply a delay of 1 second on responses from time.jsontest.com and a delay of 2 seconds on responses from date.jsontest.com.

Run the following to create and export a simulation.

hoverctl start
hoverctl mode capture
curl --proxy localhost:8500 http://time.jsontest.com
curl --proxy localhost:8500 http://date.jsontest.com
hoverctl export simulation.json
hoverctl stop





Edit the simulation.json file so that the "globalActions" property looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	      "globalActions": {
         "delays": [
            {
               "urlPattern": "time\\.jsontest\\.com",
               "httpMethod": "",
               "delay": 1000
            },
            {
               "urlPattern": "date\\.jsontest\\.com",
               "httpMethod": "",
               "delay": 2000
            }
         ],
         "delaysLogNormal": []







Now run the following to import the edited simulation.json file and run the simulation:

hoverctl start
hoverctl import simulation.json
curl --proxy localhost:8500 http://time.jsontest.com
curl --proxy localhost:8500 http://date.jsontest.com
hoverctl stop





You should notice a 1 second delay on responses from time.jsontest.com, and a 2 second delay on responses from date.jsontest.com.


Note

You can easily get into a situation where your request URL has multiple matches. In this case, the first successful match wins.







          

      

      

    

  

    
      
          
            
  
Applying different delays based on URI

Now let’s apply different delays based on location. Run the following to create and export a simulation.

hoverctl start
hoverctl mode capture
curl --proxy localhost:8500 http://echo.jsontest.com/a/b
curl --proxy localhost:8500 http://echo.jsontest.com/b/c
curl --proxy localhost:8500 http://echo.jsontest.com/c/d
hoverctl export simulation.json
hoverctl stop





Edit the simulation.json file so that the "globalActions" property looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	      "globalActions": {
         "delays": [
            {
               "urlPattern": "echo\\.jsontest\\.com\\/a\\/b",
               "httpMethod": "",
               "delay": 2000
            },
            {
               "urlPattern": "echo\\.jsontest\\.com\\/b\\/c",
               "httpMethod": "",
               "delay": 2000
            },
            {
               "urlPattern": "echo\\.jsontest\\.com\\/c\\/d",
               "httpMethod": "",
               "delay": 3000
            }
         ],
         "delaysLogNormal": []







Now run the following to import the edited simulation.json file and run the simulation:

hoverctl start
hoverctl import simulation.json
hoverctl mode simulate
curl --proxy localhost:8500 http://echo.jsontest.com/a/b
curl --proxy localhost:8500 http://echo.jsontest.com/b/c
curl --proxy localhost:8500 http://echo.jsontest.com/c/d
hoverctl stop





You should notice a 2 second delay on responses from echo.jsontest.com/a/b and echo.jsontest.com/b/c, and a 3 second delay on the response from echo.jsontest.com/c/d.


Note

When you use Hoverfly as a webserver, you should replace or remove any original host pattern in the urlPattern filter, because the endpoint URL is based on Hoverfly webserver address (eg. http://localhost:8888).







          

      

      

    

  

    
      
          
            
  
Applying different delays based on HTTP method

Let’s apply a delay of 2 seconds on responses to GET requests only made to echo.jsontest.com/b/c.

Run the following to create and export a simulation.

hoverctl start
hoverctl mode capture
curl --proxy localhost:8500 http://echo.jsontest.com/b/c
curl --proxy localhost:8500 -X POST http://echo.jsontest.com/b/c
hoverctl export simulation.json
hoverctl stop





Edit the simulation.json file so that the "globalActions" property looks like this:

	1
2
3
4
5
6
7
8
9

	      "globalActions": {
         "delays": [
            {
               "urlPattern": "echo\\.jsontest\\.com\\/b\\/c",
               "httpMethod": "GET",
               "delay": 2000
            }
         ],
         "delaysLogNormal": []







Now run the following to import the edited simulation.json file and run the simulation:

hoverctl start
hoverctl import simulation.json
curl --proxy localhost:8500 http://echo.jsontest.com/b/c
curl -X POST --proxy localhost:8500 http://echo.jsontest.com/b/c
hoverctl stop





You should notice a 2 second delay on the response to the GET request and no delay on the response to the POST request.





          

      

      

    

  

    
      
          
            
  
Log-normal distributions of delay

The Log-normal distribution [https://en.wikipedia.org/wiki/Log-normal_distribution] is a pretty accurate description of a server latency.
The Log-normal distribution defines by 2 parameters μ and σ. We will compute these parameters from mean [https://en.wikipedia.org/wiki/Expected_value] and median [https://en.wikipedia.org/wiki/Median]
of a server response time. These values you can see in your monitoring of the production server.
If need you can adjust response time by min and max parameters.

Let’s apply a random log-normal distributed delay to all responses. First, we need to create and export a simulation.

hoverctl start
hoverctl mode capture
curl --proxy localhost:8500 http://echo.jsontest.com/b/c
curl --proxy localhost:8500 -X POST http://echo.jsontest.com/b/c
hoverctl export simulation.json
hoverctl stop





Take a look at the "globalActions" property within the simulation.json file you exported. It
should look like this:

	1
2
3

	      "globalActions": {
         "delays": [],
         "delaysLogNormal": []







Edit the file so the "globalActions" property looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	      "globalActions": {
         "delaysLogNormal": [
            {
               "urlPattern": ".",
               "httpMethod": "",
               "min": 100,
               "max": 10000,
               "mean": 5000,
               "median": 500
            }
         ]
      }







Hoverfly will apply a delay to all URLs that match the "urlPattern" value. We want
the delay to be applied to all URLs, so we set the "urlPattern" value to the regular expression ".".

Now import the edited simulation.json file, switch Hoverfly to Simulate mode and make the requests
again.

hoverctl start
hoverctl import simulation.json
curl --proxy localhost:8500 http://echo.jsontest.com/b/c
curl -X POST --proxy localhost:8500 http://echo.jsontest.com/b/c
hoverctl stop









          

      

      

    

  

    
      
          
            
  
Loose request matching using a Request Matcher


See also

Please carefully read through Request Responses Pairs alongside this tutorial to gain a high-level understanding of what we are about to cover.



In some cases you may want Hoverfly to return the same stored response for more than one incoming request. This can be done using
Request Matchers.

Let’s begin by capturing some traffic and exporting a simulation. This step saves us having to manually create a simulation ourselves and gives us a request to work with.

hoverctl start
hoverctl mode capture
curl --proxy http://localhost:8500 http://echo.jsontest.com/foo/baz/bar/spam
hoverctl export simulation.json
hoverctl stop





If you take a look at your simulation.json you should notice these lines in your request.

"path": [
	{
	   "matcher": "exact",
	   "value": "/foo/baz/bar/spam"
	}
 ]





Modify them to:

"path": [
	{
	   "matcher": "glob",
	   "value": "/foo/*/bar/spam"
	}
 ]





Save the file as simulationimport.json and run the following command to import it and cURL the simulated endpoint:

hoverctl start
hoverctl mode simulate
hoverctl import simulationimport.json
curl --proxy http://localhost:8500 http://echo.jsontest.com/foo/QUX/bar/spam
hoverctl stop





The same response is returned, even though we created our simulation with a request to http://echo.jsontest.com/foo/baz/bar/spam in Capture mode and then sent a request to http://echo.jsontest.com/foo/QUX/bar/spam in Simulate mode.


See also

In this example we used the globMatch Request Matcher type. For a list of other Request Matcher types and examples
of how to use them, please see the Request matchers section.




Note

Key points:


	To change how incoming requests are matched to stored responses, capture a simulation, export it, edit it

	While editing, choose a request field to match on, select a Request Matcher type and a matcher value

	Re-import the simulation

	Requests can be manually added without capturing the request









          

      

      

    

  

    
      
          
            
  
Using middleware to simulate network latency


See also

Please carefully read through Middleware alongside these tutorials to gain a high-level understanding of what we are about to cover.



We will use a Python script to apply a random delay of less than one second to every response in a simulation.

Before you proceed, please ensure that you have Python installed.

Let’s begin by writing our middleware. Save the following as middleware.py:

#!/usr/bin/env python
import sys
import logging
import random
from time import sleep

logging.basicConfig(filename='random_delay_middleware.log', level=logging.DEBUG)
logging.debug('Random delay middleware is called')

# set delay to random value less than one second

SLEEP_SECS = random.random()

def main():

    data = sys.stdin.readlines()
    # this is a json string in one line so we are interested in that one line
    payload = data[0]
    logging.debug("sleeping for %s seconds" % SLEEP_SECS)
    sleep(SLEEP_SECS)


    # do not modifying payload, returning same one
    print(payload)

if __name__ == "__main__":
    main()





The middleware script delays each response by a random value of less than one second.

hoverctl start
hoverctl mode capture
curl --proxy http://localhost:8500 http://time.jsontest.com
hoverctl mode simulate
hoverctl middleware --binary python --script middleware.py
curl --proxy http://localhost:8500 http://time.jsontest.com
hoverctl stop





Middleware gives you control over the behaviour of a simulation, as well as the data.


Note

Middleware gives you flexibility when simulating network latency - allowing you to randomize the delay value
for example - but a new process is spawned every time the middleware script is executed. This can impact
Hoverfly’s performance under load.

If you need to simulate latency during a load test, it is recommended that you use Hoverfly’s native Delays
functionality to simulate network latency (see Adding delays to a simulation) instead of writing middleware. The delays functionality sacrifices flexibility for performance.







          

      

      

    

  

    
      
          
            
  
Using middleware to modify response payload and status code


See also

Please carefully read through Middleware alongside these tutorials to gain a high-level understanding of what we are about to cover.



We will use a python script to modify the body of a response and randomly change the status code.

Let’s begin by writing our middleware. Save the following as middleware.py:

#!/usr/bin/env python

import sys
import json
import logging
import random

logging.basicConfig(filename='middleware.log', level=logging.DEBUG)
logging.debug('Middleware "modify_request" called')

def main():
    payload = sys.stdin.readlines()[0]

    logging.debug(payload)

    payload_dict = json.loads(payload)
    payload_dict['response']['status'] = random.choice([200, 201])

    if "response" in payload_dict and "body" in payload_dict["response"]:
        payload_dict["response"]["body"] = "{'foo': 'baz'}\n"

    print(json.dumps(payload_dict))

if __name__ == "__main__":
    main()





The middleware script randomly toggles the status code between 200 and 201, and changes the response body to a dictionary containing {'foo':'baz'}.

hoverctl start
hoverctl mode capture
curl --proxy http://localhost:8500 http://time.jsontest.com
hoverctl mode simulate
hoverctl middleware --binary python --script middleware.py
curl --proxy http://localhost:8500 http://time.jsontest.com
hoverctl stop





As you can see, middleware allows you to completely modify the content of a simulated HTTP response.





          

      

      

    

  

    
      
          
            
  
Simulating HTTPS APIs

To capture HTTPS traffic, you need to use Hoverfly’s SSL certificate.

First, download the certificate:

wget https://raw.githubusercontent.com/SpectoLabs/hoverfly/master/core/cert.pem





We can now run Hoverfly with the standard capture then simulate workflow.

hoverctl start
hoverctl mode capture
curl --proxy localhost:8500 https://example.com --cacert cert.pem
hoverctl mode simulate
curl --proxy localhost:8500 https://example.com --cacert cert.pem
hoverctl stop





Curl makes the HTTPS request by first establishing a TLS tunnel to the destination with Hoverfly using the HTTP CONNECT method.
As curl has supplied Hoverfly’s SSL certificate, Hoverfly is then able to intercept and capture the traffic.
Effectively SSL-encrypted communication (HTTPS) is established through an unencrypted HTTP proxy.


Note

This example uses cURL. If you are using Hoverfly in another environment, you will need to add the certificate to your trust store.
This is done automatically by the Hoverfly Java library (see Hoverfly Java).




See also

This example uses Hoverfly’s default SSL certificate. Alternatively, you can use Hoverfly to generate
a new certificate. For more information, see Configuring SSL in Hoverfly.







          

      

      

    

  

    
      
          
            
  
Running Hoverfly as a webserver


See also

Please carefully read through Hoverfly as a webserver alongside this tutorial to gain a high-level understanding of what we are about to cover.



Below is a complete example how to capture data with Hoverfly running as a proxy, and how to save it in a simulation file.

hoverctl start
hoverctl mode capture
curl --proxy http://localhost:8500 http://echo.jsontest.com/a/b
hoverctl export simulation.json
hoverctl stop





Now we can use Hoverfly as a webserver in Simulate mode.

hoverctl start webserver
hoverctl import simulation.json
curl http://localhost:8500/a/b
hoverctl stop





Hoverfly returned a response to our request while running as a webserver, not as a proxy.

Notice that we issued a cURL command to http://localhost:8500/a/b instead of http://echo.jsontest.com/a/b.
This is because when running as a webserver, Hoverfly strips the domain from the endpoint URL in
the simulation.

This is explained in more detail in the Hoverfly as a webserver section.


Note

Hoverfly starts in Simulate mode by default.







          

      

      

    

  

    
      
          
            
  
Enable CORS support on Hoverfly

By enabling CORS (Cross-Origin Resource Sharing) support, your web application running on the browser can make requests to
Hoverfly even it’s not on the same domain.

Starting Hoverfly with CORS enabled is simple:

hoverfly -cors





Or using hoverctl:

hoverctl start --cors





You can check if CORS is enabled on the Hoverfly by querying the status:

hoverctl status





When CORS is enabled, Hoverfly intercepts any pre-flight request, and returns an empty 200 response with the following default CORS headers:


	Access-Control-Allow-Origin: (same value as the Origin header from the request)

	Access-Control-Allow-Methods: GET,POST,PUT,PATCH,DELETE,HEAD,OPTIONS

	Access-Control-Allow-Headers: (same value as the Access-Control-Request-Headers header from the request)

	Access-Control-Max-Age: 1800

	Access-Control-Allow-Credentials: true



Hoverfly also intercepts the actual CORS requests, and add the following default CORS headers to the response:


	Access-Control-Allow-Origin: (same value as the Origin header from the request)

	Access-Control-Allow-Credentials: true



Support for customizing the CORS headers will be added in the future release.


Note

Two points to notice when Hoverfly is in capture mode and CORS is enabled:
1. Pre-flight requests handling and CORS headers provided by Hoverfly are not recorded in the simulation.
2. Hoverfly preserves the CORS headers from the remote server if they are present.







          

      

      

    

  

    
      
          
            
  
Capturing or simulating specific URLs

We can use the hoverctl destination command to specify which URLs to capture or simulate. The destination
setting can be tested using the --dry-run flag. This makes it easy to check whether the destination setting
will filter out URLs as required.

hoverctl start
hoverctl destination "ip" --dry-run http://ip.jsontest.com
hoverctl destination "ip" --dry-run http://time.jsontest.com
hoverctl stop





This tells us that setting the destination to ip will allow the URL http://ip.jsontest.com to be captured or simulated, while the URL
http://time.jsontest.com will be ignored.

Now we have checked the destination setting, we can apply it to filter out the URLs we don’t want to capture.

hoverctl start
hoverctl destination "ip" 
hoverctl mode capture
curl --proxy http://localhost:8500 http://ip.jsontest.com
curl --proxy http://localhost:8500 http://time.jsontest.com
hoverctl logs
hoverctl export simulation.json
hoverctl stop





If we examine the logs and the simulation.json file, we can see that only a request response pair to the http://ip.jsontest.com
URL has been captured.

The destination setting can be either a string or a regular expression.

hoverctl start
hoverctl destination "^.*api.*com" --dry-run https://api.github.com
hoverctl destination "^.*api.*com" --dry-run https://api.slack.com
hoverctl destination "^.*api.*com" --dry-run https://github.com
hoverctl stop





Here, we can see that setting the destination to ^.*api.*com will allow the https://api.github.com and https://api.slack.com
URLs to be captured or simulated, while the https://github.com URL will be ignored.





          

      

      

    

  

    
      
          
            
  
Capturing a stateful sequence of responses

By default Hoverfly will store a given request/response pair once only.
If the same request returns different responses you may want capture the sequence of changing request/response pairs.
You may want to do this because the API is stateful rather than stateless.

A simple example of this is an API that returns the time.

To record a sequence of request/responses where the request is the same but the response is different,
we need to enable stateful recording in capture mode.

hoverctl start
hoverctl mode capture --stateful





Now that we have enabled stateful recording, we can capture several request/response pairs.

curl --proxy http://localhost:8500 http://time.jsontest.com

curl --proxy http://localhost:8500 http://time.jsontest.com





Once we have finished capturing requests, we can switch Hoverfly back to simulate mode.

hoverctl mode simulate





Now we are in simulate, we can make the same requests again, and we will see the time
update each request we make until we reach the end of our recorded sequence.

{
    "time": "01:59:21 PM",
    "milliseconds_since_epoch": 1528120761743,
    "date": "06-04-2018"
}
{
    "time": "01:59:23 PM",
    "milliseconds_since_epoch": 1528120763647,
    "date": "06-04-2018"
}





If we look at the simulation captured, can see that the requests have the requiresState fields set.
You will see Hoverfly has added a state variable called sequence:1 that acts as a counter.

"requiresState": {
    "sequence:1": "1"
}

"requiresState": {
    "sequence:1": "2"
}





We can also see that the first response has transitionsState` field set.

"transitionsState": {
    "sequence:1": "2"
}





Note that Hoverfly will automatically set the state for any “sequence:” key to “1” on import.
If you want to use a more meaningful key name you will need to initialise the state as follows:

hoverctl state set shopping-basket empty






See also

For a more detailed explaination of how sequences work in hoverfly: see Sequences in the Key Concepts section.







          

      

      

    

  

    
      
          
            
  
Advanced tutorials



	Using Hoverfly behind a proxy
	Configuring Hoverfly with a PAC file

	Upstream proxy authentication





	Controlling a remote Hoverfly instance with hoverctl

	Enabling authentication for the Hoverfly proxy and API
	Setting Hoverfly authentication credentials

	Logging in to a Hoverfly instance with hoverctl





	Configuring SSL in Hoverfly
	Override default certificate for one-way SSL authentication

	Configure Hoverfly for two-way SSL authentication













          

      

      

    

  

    
      
          
            
  
Using Hoverfly behind a proxy

In some environments, you may only be able to access the internet via a proxy. For example,
your organization may route all traffic through a proxy for security reasons.

If this is the case, you will need to configure Hoverfly to work with the ‘upstream’ proxy.

This configuration value can be easily set when starting an instance of Hoverfly.

For example, if the ‘upstream’ proxy is running on port 8080 on host corp.proxy:

hoverctl start --upstream-proxy http://corp.proxy:8080






Configuring Hoverfly with a PAC file

If you have a PAC file for configuring clients with the proxy set up in your environment, you can use this to configure Hoverfly.

For example:

hoverctl start --pac-file path/to/file.pac








Upstream proxy authentication

If the proxy you are using uses HTTP basic authentication, you can provide the authentication credentials as part of the upstream proxy configuration setting.

For example:

hoverctl start --upstream-proxy http://my-user:my-pass@corp.proxy:8080





Currently, HTTP basic authentication is the only supported authentication method for an authenticated proxy.







          

      

      

    

  

    
      
          
            
  
Controlling a remote Hoverfly instance with hoverctl

So far, the tutorials have shown how hoverctl can be used to control an instance of Hoverfly running on the same machine.

In some cases, you may wish to use hoverctl to control an instance of Hoverfly running on a remote host. With hoverctl,
you can do this using the targets feature.

In this example, we assume that the remote host is reachable at hoverfly.example.com, and that
ports 8880 and 8555 are available. We will also assume that the Hoverfly binary is installed on the remote host.

On the remote host, start Hoverfly using flags to override the default admin port (-ap) and proxy port (-pp).

hoverfly -ap 8880 -pp 8555






See also

For a full list of all Hoverfly flags, please refer to Hoverfly commands in the Reference section.



On your local machine, you can create a target named remote using hoverctl. This target will be configured to communicate
with Hoverfly.

hoverctl targets create remote \
    --host hoverfly.example.com \
    --admin-port 8880 \
    --proxy-port 8555





Now that hoverctl knows the location of the remote Hoverfly instance, run the following commands
on your local machine to capture and simulate a URL using this instance:

hoverctl -t remote mode capture
curl --proxy http://hoverfly.example.com:8555 http://ip.jsontest.com
hoverctl -t remote mode simulate
curl --proxy http://hoverfly.example.com:8555 http://ip.jsontest.com





You will now need to specify the remote target every time you want to interact with this Hoverfly instance.
If you are only working with this remote instance, you can set it to be the default target instance for hoverctl.

hoverctl targets default remote






Note

The --host value of the hoverctl target allows hoverctl to interact with the admin API
of the remote Hoverfly instance.

The application that is making the request (in this case, cURL), also needs to be configured to
use the remote Hoverfly instance as a proxy. In this example, it is done using cURL’s --proxy flag.



If you are running Hoverfly on a remote host, you may wish to enable authentication on the Hoverfly proxy and admin API.
This is described in the Enabling authentication for the Hoverfly proxy and API tutorial.





          

      

      

    

  

    
      
          
            
  
Enabling authentication for the Hoverfly proxy and API

Sometimes, you may need authentication on Hoverfly. An example
use case would be when running Hoverfly on a remote host.

Hoverfly can provide authentication for both the admin API
(using a JWT token) and the proxy (using HTTP basic auth).


Setting Hoverfly authentication credentials

To start a Hoverfly instance with authentication enabled, you need to run
the hoverctl start command with the authentication (--auth) flag.

hoverctl start --auth





Running this command will prompt you to set a username and
password for the Hoverfly instance.

This can be bypassed by providing the --username
and --password flags, although this will leave credentials
in your terminal history.


Warning

By default, hoverctl will start Hoverfly with authentication disabled. If you require authentication
you must make sure the --auth flag are supplied every time Hoverfly is started.






Logging in to a Hoverfly instance with hoverctl

Now that a Hoverfly instance has started with authentication enabled, you will need to
login to the instance using hoverctl.

hoverctl login





Running this command will prompt you to enter the username and
password you set for the Hoverfly instance. Again, this can be bypassed by providing the --username
and --password flags.

There may be situations in which you need to log into to a Hoverfly instance
that is already running. In this case, it is best practice to create a new target
for the instance (please see Controlling a remote Hoverfly instance with hoverctl for more information on targets). You can do this using
the --new-target flag.

In this example, a remote Hoverfly instance is already running on the host `hoverfly.example.com`, with
the ports set to 8880 and 8555 and authentication enabled (the example from Controlling a remote Hoverfly instance with hoverctl).
You will need to create a new target (named remote) for the instance and log in with it.

hoverctl login --new-target remote \
    --host hoverfly.example.io \
    --admin-port 8880 \
    --proxy-port 8550





You will be prompted to enter the username and password for the instance.

Now run the following commands to capture and simulate a URL using the
remote Hoverfly:

hoverctl -t remote mode capture
curl --proxy http://my-user:my-pass@hoverfly.example.com:8555 http://ip.jsontest.com
hoverctl -t remote mode simulate
curl --proxy http://my-user:my-pass@hoverfly.example.com:8555 http://ip.jsontest.com











          

      

      

    

  

    
      
          
            
  
Configuring SSL in Hoverfly

Hoverfly supports both one-way and two-way SSL authentication.

Hoverfly uses default certificate which you should add to your HTTPS client’s trust store for one-way SSL authentication. You have options to provide your own certificate, please see below.


Override default certificate for one-way SSL authentication

In some cases, you may not wish to use Hoverfly’s default SSL certificate. Hoverfly allows
you to generate a new certificate and key.

The following command will start a Hoverfly process and create new cert.pem and key.pem
files in the current working directory. These newly-created files will be loaded into the
running Hoverfly instance.

hoverfly -generate-ca-cert





Optionally, you can provide a custom certificate name and authority:

hoverfly -generate-ca-cert -cert-name tutorial.cert -cert-org "Tutorial Certificate Authority"





Once you have generated cert.pem and key.pem files with Hoverfly, you can use hoverctl
to start an instance of Hoverfly using these files.

hoverctl start --certificate cert.pem --key key.pem






Note

Both a certificate and a key file must be supplied. The files must be in unencrypted PEM format.






Configure Hoverfly for two-way SSL authentication

For two-way or mutual SSL authentication, you should provide Hoverfly with a client certificate and a certificate key  that you use to authenticate with the remote server.

Two-way SSL authentication is only enabled for request hosts that match the value you provided to the --client-authentication-destination flag. You can also pass a regex pattern if you need to match multiple hosts.

hoverctl start --client-authentication-client-cert cert.pem --client-authentication-client-key key.pem --client-authentication-destination <host name of the remote server>





If you need to provide a CA cert, you can do so using the --client-authentication-ca-cert flag.







          

      

      

    

  

    
      
          
            
  
Troubleshooting


Why isn’t Hoverfly matching my request?

When Hoverfly cannot match a response to an incoming request, it will return information on the closest match:

Hoverfly Error!

There was an error when matching

Got error: Could not find a match for request, create or record a valid matcher first!

The following request was made, but was not matched by Hoverfly:

{
    "Path": "/closest-miss",
    "Method": "GET",
    "Destination": "destination.com",
    "Scheme": "http",
    "Query": "",
    "Body": "",
    "Headers": {
        "Accept-Encoding": [
            "gzip"
        ],
        "User-Agent": [
            "Go-http-client/1.1"
        ]
    }
}

The matcher which came closest was:

{
    "path": [
        {
            "matcher": "exact",
            "value": "/closest-miss"
        }
    ],
    "destination": [
        {
            "matcher": "exact",
            "value": "destination.com"
        }
    ],
    "body": [
        {
            "matcher": "exact",
            "value": "body"
        }
    ]
}

But it did not match on the following fields:

[body]

Which if hit would have given the following response:

{
    "status": 200,
    "body": "",
    "encodedBody": false,
    "headers": null
}`





Here, you can see which fields did not match. In this case, it was the body.
You can also view this information by running hoverctl logs.




Why isn’t Hoverfly returning the closest match when it cannot match a request?

Hoverfly will only provide this information when the matching strategy is set to strongest match
(the default). If you are using the first match matching strategy, the closet match information
will not be returned.




How can I view the Hoverfly logs?

hoverctl logs








Why does my simulation have a deprecatedQuery field?

Older simulations that have been upgraded through newer versions of Hoverfly may now contain a field
on requests called deprecatedQuery. With the v5 simulation schema, the request query field was
updated to more fully represent request query paramters. This involves storing queries based on
query keys, similarly to how headers are stored in a simulation.

Currently the deprecatedQuery field will work and works alongside the query field and support
for this field will eventually be dropped.

If you have deprecatedQuery field, you should remove it by splitting it by query keys.

"deprecatedQuery": "page=20&pageSize=15"





"query": {
    "page": [
        {
            "matcher": "exact",
            "value": "20"
        }
    ],
    "pageSize": [
        {
            "matcher": "exact",
            "value": "15"
        }
    ],
}





If you cannot update your deprecatedQuery from your simulation for a technical reason, feel free to
raise an issue on Hoverfly.




Why am I not able to access my Hoverfly remotely?

That’s because Hoverfly is bind to loopback interface by default, meaning that you can only access
to it on localhost. To access it remotely, you can specify the IP address it listens on. For example,
setting 0.0.0.0 to listen on all network interfaces.

hoverfly -listen-on-host 0.0.0.0








My simulation file is very large because of response bodies, what can I do with that?

You can move those response bodies into separate files and specify bodyFile in the response instead of
body. Please refer to Request Responses Pairs.







          

      

      

    

  

    
      
          
            
  
Reference

These reference documents contain information regarding invoking the hoverctl command, hoverfly command, and interacting with the APIs.



	hoverctl commands

	Hoverfly commands

	Request matchers

	REST API

	Simulation schema









          

      

      

    

  

    
      
          
            
  
hoverctl commands

This page contains the output of:

hoverctl --help





The command’s help content has been placed here for convenience.

hoverctl is the command line tool for Hoverfly

Usage:
  hoverctl [command]

Available Commands:
  completion  Create Bash completion file for hoverctl
  config      Show hoverctl configuration information
  delete      Delete Hoverfly simulation
  destination Get and set Hoverfly destination
  diff        Manage the diffs for Hoverfly
  export      Export a simulation from Hoverfly
  flush       Flush the internal cache in Hoverfly
  import      Import a simulation into Hoverfly
  login       Login to Hoverfly
  logs        Get the logs from Hoverfly
  middleware  Get and set Hoverfly middleware
  mode        Get and set the Hoverfly mode
  simulation  Manage the simulation for Hoverfly
  start       Start Hoverfly
  state       Manage the state for Hoverfly
  status      Get the current status of Hoverfly
  stop        Stop Hoverfly
  targets     Get the current targets registered with hoverctl
  version     Get the version of hoverctl

Flags:
  -f, --force           Bypass any confirmation when using hoverctl
  -h, --help            help for hoverctl
      --set-default     Sets the current target as the default target for hoverctl
  -t, --target string   A name for an instance of Hoverfly you are trying to communicate with. Overrides the default target (default)
  -v, --verbose         Verbose logging from hoverctl

Use "hoverctl [command] --help" for more information about a command.






hoverctl auto completion

hoverctl supplies auto completion for Bash. Run the following command to install the completions.

hoverctl completion





This will create the completion file in your hoverfly directory and create a symbolic link in your bash_completion.d folder.

Optionally you can supply a location for the symbolic link as an argument to the completion command.

hoverctl completion /usr/local/etc/bash_completion.d/hoverctl











          

      

      

    

  

    
      
          
            
  
Hoverfly commands

This page contains the output of:

hoverfly --help





The command’s help content has been placed here for convenience.

Usage of hoverfly:
  -add
        Add new user '-add -username hfadmin -password hfpass'
  -admin
        Supply '-admin=false' to make this non admin user (default true)
  -ap string
        Admin port - run admin interface on another port (i.e. '-ap 1234' to run admin UI on port 1234)
  -auth
        Enable authentication
  -cache-size int
        Set the size of request/response cache (default 1000)
  -capture
        Start Hoverfly in capture mode - transparently intercepts and saves requests/response
  -cert string
        CA certificate used to sign MITM certificates
  -cert-name string
        Cert name (default "hoverfly.proxy")
  -cert-org string
        Organisation name for new cert (default "Hoverfly Authority")
  -client-authentication-ca-cert string
        Path to the ca cert file used for authentication
  -client-authentication-client-cert string
        Path to the client certification file used for authentication
  -client-authentication-client-key string
        Path to the client key file used for authentication
  -client-authentication-destination string
        Regular expression of destination with client authentication
  -cors
        Enable CORS support
  -db string
        Storage to use - 'boltdb' or 'memory' which will not write anything to disk (DEPRECATED) (default "memory")
  -db-path string
        A path to a BoltDB file with persisted user and token data for authentication (DEPRECATED)
  -dest value
        Specify which hosts to process (i.e. '-dest fooservice.org -dest barservice.org -dest catservice.org') - other hosts will be ignored will passthrough'
  -destination string
        Control which URLs Hoverfly should intercept and process, it can be string or regex (default ".")
  -dev
        Enable CORS headers to allow Hoverfly Admin UI development
  -dev-cors-origin string
        Custom CORS origin for dev mode (default "http://localhost:4200")
  -diff
        Start Hoverfly in diff mode - calls real server and compares the actual response with the expected simulation config if present
  -disable-cache
        Disable the request/response cache (the cache that sits in front of matching)
  -generate-ca-cert
        Generate CA certificate and private key for MITM
  -import value
        Import from file or from URL (i.e. '-import my_service.json' or '-import http://mypage.com/service_x.json'
  -journal-size int
        Set the size of request/response journal (default 1000)
  -key string
        Private key of the CA used to sign MITM certificates
  -listen-on-host string
        Specify which network interface to bind to, eg. 0.0.0.0 will bind to all interfaces. By default hoverfly will only bind ports to loopback interface
  -log-level string
        Set log level (panic, fatal, error, warn, info or debug) (default "info")
  -log-no-color
        Disable colors for logging
  -logs string
        Specify format for logs, options are "plaintext" and "json" (default "plaintext")
  -logs-file string
        Specify log file name for output logs (default "hoverfly.log")
  -logs-output value
        Specify locations for output logs, options are "console" and "file" (default "console")
  -logs-size int
        Set the amount of logs to be stored in memory (default 1000)
  -metrics
        Enable metrics logging to stdout
  -middleware string
        Set middleware by passing the name of the binary and the path of the middleware script separated by space. (i.e. '-middleware "python script.py"')
  -modify
        Start Hoverfly in modify mode - applies middleware (required) to both outgoing and incoming HTTP traffic
  -no-import-check
        Skip duplicate request check when importing simulations
  -password string
        Password for new user
  -password-hash string
        Password hash for new user instead of password
  -plain-http-tunneling
        Use plain http tunneling to host with non-443 port
  -pp string
        Proxy port - run proxy on another port (i.e. '-pp 9999' to run proxy on port 9999)
  -response-body-files-allow-origin value
        When a response contains a url in bodyFile, it will be loaded only if the origin is allowed
  -response-body-files-path string
        When a response contains a relative bodyFile, it will be resolved against this path (default is CWD)
  -spy
        Start Hoverfly in spy mode, similar to simulate but calls real server when cache miss
  -synthesize
        Start Hoverfly in synthesize mode (middleware is required)
  -tls-verification
        Turn on/off tls verification for outgoing requests (will not try to verify certificates) (default true)
  -upstream-proxy string
        Specify an upstream proxy for hoverfly to route traffic through
  -username string
        Username for new user
  -v    Should every proxy request be logged to stdout
  -version
        Get the version of hoverfly
  -webserver
        Start Hoverfly in webserver mode (simulate mode)









          

      

      

    

  

    
      
          
            
  
Request matchers

A Request Matcher is used to define the desired value for a specific request field when matching against incoming requests.
Given a matcher value and string to match, each matcher will transform and compare the values in a different way.


Exact matcher

Evaluates the equality of the matcher value and the string to match. There are no transformations.
This is the default Request Matcher type which is set by Hoverfly when requests and responses are captured.


Example

"matcher": "exact"
"value": "?"






    
        
            	String to match
            	Matcher value
            	Match
        

    
    
        
            	docs.hoverfly.io
            	docs.hoverfly.io
            	
        

        
            	specto.io
            	docs.hoverfly.io
            	
        

    
  
    
    
    REST API
    
    

    

    

    

    
 
  
  

    
      
          
            
  
REST API


GET /api/v2/simulation

Gets all simulation data. The simulation JSON contains all the information Hoverfly can hold; this includes recordings, templates, delays and metadata.

Example response body

{
  "data": {
    "pairs": [
      {
        "request": {
          "path": [
            {
              "matcher": "exact",
              "value": "/"
            }
          ],
          "method": [
            {
              "matcher": "exact",
              "value": "GET"
            }
          ],
          "destination": [
            {
              "matcher": "exact",
              "value": "myhost.io"
            }
          ],
          "scheme": [
            {
              "matcher": "exact",
              "value": "https"
            }
          ],
          "body": [
            {
              "matcher": "exact",
              "value": ""
            }
          ],
          "headers": {
            "Accept": [
              {
                "matcher": "glob",
                "value": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8"
              }
            ],
            "Content-Type": [
              {
                "matcher": "glob",
                "value": "text/plain; charset=utf-8"
              }
            ],
            "User-Agent": [
              {
                "matcher": "glob",
                "value": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36"
              }
            ]
          },
          "query": {
            "status": [
              {
                "matcher": "exact",
                "value": "available"
              }
            ]
          }
        },
        "response": {
          "status": 200,
          "body": "<h1>Matched on recording</h1>",
          "encodedBody": false,
          "headers": {
            "Content-Type": [
              "text/html; charset=utf-8"
            ]
          },
          "templated": false
        }
      },
      {
        "request": {
          "path": [
            {
              "matcher": "exact",
              "value": "/template"
            }
          ]
        },
        "response": {
          "status": 200,
          "body": "<h1>Matched on template</h1>",
          "encodedBody": false,
          "headers": {
            "Content-Type": [
              "text/html; charset=utf-8"
            ]
          },
          "templated": false
        }
      }
    ],
    "globalActions": {
      "delays": [],
      "delaysLogNormal": []
    }
  },
  "meta": {
    "schemaVersion": "v5",
    "hoverflyVersion": "v1.0.0",
    "timeExported": "2019-05-30T22:14:24+01:00"
  }
}








PUT /api/v2/simulation

This puts the supplied simulation JSON into Hoverfly, overwriting any existing simulation data.

Example request body

{
  "data": {
    "pairs": [
      {
        "request": {
          "path": [
            {
              "matcher": "exact",
              "value": "/"
            }
          ],
          "method": [
            {
              "matcher": "exact",
              "value": "GET"
            }
          ],
          "destination": [
            {
              "matcher": "exact",
              "value": "myhost.io"
            }
          ],
          "scheme": [
            {
              "matcher": "exact",
              "value": "https"
            }
          ],
          "body": [
            {
              "matcher": "exact",
              "value": ""
            }
          ],
          "headers": {
            "Accept": [
              {
                "matcher": "glob",
                "value": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8"
              }
            ],
            "Content-Type": [
              {
                "matcher": "glob",
                "value": "text/plain; charset=utf-8"
              }
            ],
            "User-Agent": [
              {
                "matcher": "glob",
                "value": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36"
              }
            ]
          },
          "query": {
            "status": [
              {
                "matcher": "exact",
                "value": "available"
              }
            ]
          }
        },
        "response": {
          "status": 200,
          "body": "<h1>Matched on recording</h1>",
          "encodedBody": false,
          "headers": {
            "Content-Type": [
              "text/html; charset=utf-8"
            ]
          },
          "templated": false
        }
      },
      {
        "request": {
          "path": [
            {
              "matcher": "exact",
              "value": "/template"
            }
          ]
        },
        "response": {
          "status": 200,
          "body": "<h1>Matched on template</h1>",
          "encodedBody": false,
          "headers": {
            "Content-Type": [
              "text/html; charset=utf-8"
            ]
          },
          "templated": false
        }
      }
    ],
    "globalActions": {
      "delays": [],
      "delaysLogNormal": []
    }
  },
  "meta": {
    "schemaVersion": "v5",
    "hoverflyVersion": "v1.0.0",
    "timeExported": "2019-05-30T22:14:24+01:00"
  }
}








POST /api/v2/simulation

This appends the supplied simulation JSON to the existing simulation data in Hoverfly. Any pair that has request data identical to the existing ones will not be added.

Example request body

{
  "data": {
    "pairs": [
      {
        "request": {
          "path": [
            {
              "matcher": "exact",
              "value": "/"
            }
          ],
          "method": [
            {
              "matcher": "exact",
              "value": "GET"
            }
          ],
          "destination": [
            {
              "matcher": "exact",
              "value": "myhost.io"
            }
          ],
          "scheme": [
            {
              "matcher": "exact",
              "value": "https"
            }
          ],
          "body": [
            {
              "matcher": "exact",
              "value": ""
            }
          ],
          "headers": {
            "Accept": [
              {
                "matcher": "glob",
                "value": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8"
              }
            ],
            "Content-Type": [
              {
                "matcher": "glob",
                "value": "text/plain; charset=utf-8"
              }
            ],
            "User-Agent": [
              {
                "matcher": "glob",
                "value": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36"
              }
            ]
          },
          "query": {
            "status": [
              {
                "matcher": "exact",
                "value": "available"
              }
            ]
          }
        },
        "response": {
          "status": 200,
          "body": "<h1>Matched on recording</h1>",
          "encodedBody": false,
          "headers": {
            "Content-Type": [
              "text/html; charset=utf-8"
            ]
          },
          "templated": false
        }
      },
      {
        "request": {
          "path": [
            {
              "matcher": "exact",
              "value": "/template"
            }
          ]
        },
        "response": {
          "status": 200,
          "body": "<h1>Matched on template</h1>",
          "encodedBody": false,
          "headers": {
            "Content-Type": [
              "text/html; charset=utf-8"
            ]
          },
          "templated": false
        }
      }
    ],
    "globalActions": {
      "delays": [],
      "delaysLogNormal": []
    }
  },
  "meta": {
    "schemaVersion": "v5",
    "hoverflyVersion": "v1.0.0",
    "timeExported": "2019-05-30T22:14:24+01:00"
  }
}








DELETE /api/v2/simulation

Unsets the simulation data for Hoverfly.






GET /api/v2/simulation/schema

Gets the JSON Schema used to validate the simulation JSON.






GET /api/v2/hoverfly

Gets configuration information from the running instance of Hoverfly.

Example response body

{
    "cors": {
        "enabled": true,
        "allowOrigin": "*",
        "allowMethods": "GET,POST,PUT,PATCH,DELETE,HEAD,OPTIONS",
        "allowHeaders": "Content-Type,Origin,Accept,Authorization,Content-Length,X-Requested-With",
        "preflightMaxAge": 1800,
        "allowCredentials": true
    },
    "destination": ".",
    "middleware": {
        "binary": "python",
        "script": "# a python script would go here",
        "remote": ""
    },
    "mode": "simulate",
    "arguments": {
        "matchingStrategy": "strongest"
    },
    "isWebServer": false,
    "usage": {
        "counters": {
            "capture": 0,
            "modify": 0,
            "simulate": 0,
            "synthesize": 0
        }
    },
    "version": "v1.3.3",
    "upstreamProxy": ""
}










GET /api/v2/hoverfly/cors

Gets CORS configuration information from the running instance of Hoverfly.

Example response body

{
    "enabled": true,
    "allowOrigin": "*",
    "allowMethods": "GET,POST,PUT,PATCH,DELETE,HEAD,OPTIONS",
    "allowHeaders": "Content-Type, Origin, Accept, Authorization, Content-Length, X-Requested-With",
    "preflightMaxAge": 1800,
    "allowCredentials": true
}










GET /api/v2/hoverfly/destination

Gets the current destination setting for the running instance of
Hoverfly.

Example response body

{
    destination: "."
}








PUT /api/v2/hoverfly/destination

Sets a new destination for the running instance of Hoverfly, overwriting
the existing destination setting.

Example request body

{
    destination: "new-destination"
}










GET /api/v2/hoverfly/middleware

Gets the middleware settings for the running instance of Hoverfly. This
could be either an executable binary, a script that can be executed with
a binary or a URL to remote middleware.

Example response body

{
    "binary": "python",
    "script": "#python code goes here",
    "remote": ""
}








PUT /api/v2/hoverfly/middleware

Sets new middleware, overwriting the existing middleware
for the running instance of Hoverfly. The middleware being set
can be either an executable binary located on the host, a script
and the binary to execute it or the URL to a remote middleware.

Example request body

{
    "binary": "python",
    "script": "#python code goes here",
    "remote": ""
}










GET /api/v2/hoverfly/mode

Gets the mode for the running instance of Hoverfly.

Example response body

{
    "mode": "capture",
    "arguments": {
        "headersWhitelist": [
            "*"
        ],
        "stateful": true,
        "overwriteDuplicate": true
    }
}










PUT /api/v2/hoverfly/mode

Changes the mode of the running instance of Hoverfly. Pass additional arguments to set the mode options.

Example request body

{
    "mode": "capture",
    "arguments": {
        "headersWhitelist": [
            "*"
        ],
        "stateful": true,
        "overwriteDuplicate": true
    }
}










GET /api/v2/hoverfly/usage

Gets metrics information for the running instance of Hoverfly.

Example response body

{
    "metrics": {
        "counters": {
            "capture": 0,
            "modify": 0,
            "simulate": 0,
            "synthesize": 0
        }
    }
}










GET /api/v2/hoverfly/version

Gets the version of Hoverfly.

Example response body

{
    "version": "v0.10.1"
}










GET /api/v2/hoverfly/upstream-proxy

Gets the upstream proxy configured for Hoverfly.

Example response body

{
    "upstreamProxy": "proxy.corp.big-it-company.org:8080"
}










GET /api/v2/hoverfly/pac

Gets the PAC file configured for Hoverfly. The response contains plain text with PAC file.
If no PAC was provided before, the response is 404 with contents:

{
    "error": "Not found"
}










PUT /api/v2/hoverfly/pac

Sets the PAC file for Hoverfly.






DELETE /api/v2/hoverfly/pac

Unsets the PAC file configured for Hoverfly.






GET /api/v2/cache

Gets the requests and responses stored in the cache.

Example response body

{
    "cache": [
        {
            "key": "2fc8afceec1b6bcf99ff1f547c1f5b11",
            "matchingPair": {
                "request": {
                    "path": [{
                        "matcher": "exact",
                        "value": "hoverfly.io"
                    }]
                },
                "response": {
                    "status": 200,
                    "body": "response body",
                    "encodedBody": false,
                    "headers": {
                        "Hoverfly": [
                            "Was-Here"
                        ]
                    }
                }
            },
            "headerMatch": false,
            "closestMiss": null
        }
    ]
}










DELETE /api/v2/cache

Delete all requests and responses stored in the cache.






GET /api/v2/logs

Gets the logs from Hoverfly.

It supports multiple parameters to limit the amount of entries returned:


	limit - Maximum amount of entries. 500 by default;

	from - Timestamp to start filtering from.



Running hoverfly with -logs-size=0 disables logging and 500 response is returned with body:

{
    "error": "Logs disabled"
}





Example response body

{
    "logs": [
        {
            "level": "info",
            "msg": "serving proxy",
            "time": "2017-03-13T12:22:39Z"
        },
        {
            "destination": ".",
            "level": "info",
            "mode": "simulate",
            "msg": "current proxy configuration",
            "port": "8500",
            "time": "2017-03-13T12:22:39Z"
        },
        {
            "destination": ".",
            "Mode": "simulate",
            "ProxyPort": "8500",
            "level": "info",
            "msg": "Proxy prepared...",
            "time": "2017-03-13T12:22:39Z"
        },
    ]
}










GET /api/v2/journal

Gets the journal from Hoverfly. Each journal entry contains both the request Hoverfly received and the response
it served along with the mode Hoverfly was in, the time the request was received and the time taken for Hoverfly
to process the request. Latency is in milliseconds.

It supports paging using the offset and limit query parameters.

It supports multiple parameters to limit the amount of entries returned:


	limit - Maximum amount of entries. 500 by default;

	offset - Offset of the first element;

	to - Timestamp to start filtering to;

	from - Timestamp to start filtering from;

	sort - Sort results in format “field:order”. Supported fields: timestarted and latency. Supported orders: asc and desc.



Running hoverfly with -journal-size=0 disables logging and 500 response is returned with body:

{
    "error": "Journal disabled"
}





Example response body

{
  "journal": [
    {
      "request": {
        "path": "/",
        "method": "GET",
        "destination": "hoverfly.io",
        "scheme": "http",
        "query": "",
        "body": "",
        "headers": {
          "Accept": [
            "*/*"
          ],
          "Proxy-Connection": [
            "Keep-Alive"
          ],
          "User-Agent": [
            "curl/7.50.2"
          ]
        }
      },
      "response": {
        "status": 502,
        "body": "Hoverfly Error!\n\nThere was an error when matching\n\nGot error: Could not find a match for request, create or record a valid matcher first!",
        "encodedBody": false,
        "headers": {
          "Content-Type": [
            "text/plain"
          ]
        }
      },
      "mode": "simulate",
      "timeStarted": "2017-07-17T10:41:59.168+01:00",
      "latency": 0.61334
    }
  ],
  "offset": 0,
  "limit": 25,
  "total": 1
}










DELETE /api/v2/journal

Delete all entries stored in the journal.






POST /api/v2/journal

Filter and search entries stored in the journal.

Example request body

{
    "request": {
        "destination": [{
          "matcher": "exact",
          "value": "hoverfly.io"
        }]
    }
}










GET /api/v2/state

Gets the state from Hoverfly. State is represented as a set of key value pairs.

Example response body

{
  "state": {
    "page_state": "CHECKOUT"
  }
}










DELETE /api/v2/state

Deletes all state from Hoverfly.






PUT /api/v2/state

Deletes all state from Hoverfly and then sets the state to match the state in the request body.

Example request body

{
  "state": {
    "page_state": "CHECKOUT"
  }
}










PATCH /api/v2/state

Updates state in Hoverfly. Will update each state key referenced in the request body.

Example request body

{
  "state": {
    "page_state": "CHECKOUT"
  }
}










GET /api/v2/diff

Gets all reports containing response differences from Hoverfly. The diffs are represented as lists of strings grouped by the same requests.

Example response body

{
  "diff": [{
    "request": {
      "method": "GET",
      "host": "time.jsontest.com",
      "path": "/",
      "query": ""
    },
    "diffReports": [{
      "timestamp": "2018-03-16T17:45:40Z",
      "diffEntries": [{
        "field": "header/X-Cloud-Trace-Context",
        "expected": "[ec6c455330b682c3038ba365ade6652a]",
        "actual": "[043c9bb2eafa1974bc09af654ef15dc3]"
      }, {
        "field": "header/Date",
        "expected": "[Fri, 16 Mar 2018 17:45:34 GMT]",
        "actual": "[Fri, 16 Mar 2018 17:45:41 GMT]"
      }, {
        "field": "body/time",
        "expected": "05:45:34 PM",
        "actual": "05:45:41 PM"
      }, {
        "field": "body/milliseconds_since_epoch",
        "expected": "1.521222334104e+12",
        "actual": "1.521222341017e+12"
      }]
    }]
  }]
}










DELETE /api/v2/diff

Deletes all reports containing differences from Hoverfly.




DELETE /api/v2/shutdown

Shuts down the hoverfly instance.







          

      

      

    

  

  
    
    
    Simulation schema
    
    

    

    

    

    
 
  
  

    
      
          
            
  
Simulation schema

This is the JSON schema for v5 Hoverfly simulations.

{
  "additionalProperties": false,
  "definitions": {
    "delay": {
      "properties": {
        "delay": {
          "type": "integer"
        },
        "httpMethod": {
          "type": "string"
        },
        "urlPattern": {
          "type": "string"
        }
      },
      "type": "object"
    },
    "delay-log-normal": {
      "properties": {
        "httpMethod": {
          "type": "string"
        },
        "max": {
          "type": "integer"
        },
        "mean": {
          "type": "integer"
        },
        "median": {
          "type": "integer"
        },
        "min": {
          "type": "integer"
        },
        "urlPattern": {
          "type": "string"
        }
      },
      "type": "object"
    },
    "field-matchers": {
      "properties": {
        "matcher": {
          "type": "string"
        },
        "value": {}
      },
      "type": "object"
    },
    "headers": {
      "additionalProperties": {
        "items": {
          "type": "string"
        },
        "type": "array"
      },
      "type": "object"
    },
    "meta": {
      "properties": {
        "hoverflyVersion": {
          "type": "string"
        },
        "schemaVersion": {
          "type": "string"
        },
        "timeExported": {
          "type": "string"
        }
      },
      "required": ["schemaVersion"],
      "type": "object"
    },
    "request": {
      "properties": {
        "body": {
          "items": {
            "$ref": "#/definitions/field-matchers"
          },
          "type": "array"
        },
        "destination": {
          "items": {
            "$ref": "#/definitions/field-matchers"
          },
          "type": "array"
        },
        "headers": {
          "$ref": "#/definitions/request-headers"
        },
        "path": {
          "items": {
            "$ref": "#/definitions/field-matchers"
          },
          "type": "array"
        },
        "query": {
          "$ref": "#/definitions/request-queries"
        },
        "requiresState": {
          "patternProperties": {
            ".{1,}": {
              "type": "string"
            }
          },
          "type": "object"
        },
        "scheme": {
          "items": {
            "$ref": "#/definitions/field-matchers"
          },
          "type": "array"
        }
      },
      "type": "object"
    },
    "request-headers": {
      "additionalProperties": {
        "items": {
          "$ref": "#/definitions/field-matchers"
        },
        "type": "array"
      },
      "type": "object"
    },
    "request-queries": {
      "additionalProperties": {
        "items": {
          "$ref": "#/definitions/field-matchers"
        },
        "type": "array"
      },
      "type": "object"
    },
    "request-response-pair": {
      "properties": {
        "request": {
          "$ref": "#/definitions/request"
        },
        "response": {
          "$ref": "#/definitions/response"
        }
      },
      "required": ["request", "response"],
      "type": "object"
    },
    "response": {
      "properties": {
        "body": {
          "type": "string"
        },
        "bodyFile": {
          "type": "string"
        },
        "encodedBody": {
          "type": "boolean"
        },
        "fixedDelay": {
          "type": "integer"
        },
        "headers": {
          "$ref": "#/definitions/headers"
        },
        "logNormalDelay": {
          "properties": {
            "max": {
              "type": "integer"
            },
            "mean": {
              "type": "integer"
            },
            "median": {
              "type": "integer"
            },
            "min": {
              "type": "integer"
            }
          }
        },
        "removesState": {
          "type": "array"
        },
        "status": {
          "type": "integer"
        },
        "templated": {
          "type": "boolean"
        },
        "transitionsState": {
          "patternProperties": {
            ".{1,}": {
              "type": "string"
            }
          },
          "type": "object"
        }
      },
      "type": "object"
    }
  },
  "description": "Hoverfly simulation schema",
  "properties": {
    "data": {
      "properties": {
        "globalActions": {
          "properties": {
            "delays": {
              "items": {
                "$ref": "#/definitions/delay"
              },
              "type": "array"
            },
            "delaysLogNormal": {
              "items": {
                "$ref": "#/definitions/delay-log-normal"
              },
              "type": "array"
            }
          },
          "type": "object"
        },
        "pairs": {
          "items": {
            "$ref": "#/definitions/request-response-pair"
          },
          "type": "array"
        }
      },
      "type": "object"
    },
    "meta": {
      "$ref": "#/definitions/meta"
    }
  },
  "required": ["data", "meta"],
  "type": "object"
}









          

      

      

    

  

  
    
    
    Contributing
    
    

    

    

    

    
 
  
  

    
      
          
            
  
Contributing

Contributions are welcome! To contribute, please:


	Fork the repository

	Create a feature branch on your fork

	Commit your changes, and create a pull request against Hoverfly’s master branch



In your pull request, please include details regarding your change (why you made the change, how to test it etc).

Learn more about the forking workflow here [https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow].


Building, running & testing

You will need Go 1.16 [https://golang.org] . Instructions on how to set up your Go environment can be found here [https://golang.org/doc/install].

git clone https://github.com/SpectoLabs/hoverfly.git
# or: git clone https://github.com/<your_username>/hoverfly.git
cd hoverfly
make build





Notice the binaries are in the target directory.

Finally, to test your build:

make test











          

      

      

    

  

  
    
    
    Community
    
    

    

    

    

    
 
  
  

    
      
          
            
  
Community


	Chat on the Hoverfly Gitter channel [https://gitter.im/SpectoLabs/hoverfly]

	Join the Hoverfly mailing list [https://groups.google.com/a/specto.io/forum/#!forum/hoverfly]

	Raise a GitHub Issue [https://github.com/SpectoLabs/hoverfly/issues]

	Get in touch with SpectoLabs on Twitter [https://twitter.com/spectolabs]







          

      

      

    

  

  
    
    
    Index
    
    

    

    

    

    
 
  
  

    
      
          
            

Index



 




          

      

      

    

  

  
    
    
    Basic encoded simulation
    
    

    

    

    

    
 
  
  

    
      
          
            
  
Basic encoded simulation

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

	{
   "data": {
      "pairs": [
         {
            "request": {
               "path": [
                  {
                     "matcher": "exact",
                     "value": "/pages/keyconcepts/templates.html"
                  }
               ],
               "method": [
                  {
                     "matcher": "exact",
                     "value": "GET"
                  }
               ],
               "destination": [
                  {
                     "matcher": "exact",
                     "value": "docs.hoverfly.io"
                  }
               ],
               "scheme": [
                  {
                     "matcher": "exact",
                     "value": "http"
                  }
               ],
               "body": [
                  {
                     "matcher": "exact",
                     "value": ""
                  }
               ],
               "query": {
                  "query": [
                     {
                        "matcher": "exact",
                        "value": "true"
                     }
                  ]
               }
            },
            "response": {
               "status": 200,
               "body": "YmFzZTY0IGVuY29kZWQ=",
               "encodedBody": true,
               "headers": {
                  "Hoverfly": [
                     "Was-Here"
                  ]
               },
               "templated": false
            }
         }
      ],
      "globalActions": {
         "delays": [],
         "delaysLogNormal": []
      }
   },
   "meta": {
      "schemaVersion": "v5.1",
      "hoverflyVersion": "v1.2.0",
      "timeExported": "2020-04-25T17:56:32+03:00"
   }
}











          

      

      

    

  

  
    
    
    Multiple locations delay simulation
    
    

    

    

    

    
 
  
  

    
      
          
            
  
Multiple locations delay simulation

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

	{
   "data": {
      "pairs": [
         {
            "request": {
               "destination": [
                  {
                     "matcher": "glob",
                     "value": "*"
                  }
               ]
            },
            "response": {
               "status": 200,
               "body": "Delayed response",
               "encodedBody": false,
               "headers": {
                  "Hoverfly": [
                     "Was-Here"
                  ]
               },
               "templated": false
            }
         }
      ],
      "globalActions": {
         "delays": [
            {
               "urlPattern": "echo\\.jsontest\\.com\\/a\\/b",
               "httpMethod": "",
               "delay": 2000
            },
            {
               "urlPattern": "echo\\.jsontest\\.com\\/b\\/c",
               "httpMethod": "",
               "delay": 2000
            },
            {
               "urlPattern": "echo\\.jsontest\\.com\\/c\\/d",
               "httpMethod": "",
               "delay": 3000
            }
         ],
         "delaysLogNormal": []
      }
   },
   "meta": {
      "schemaVersion": "v5.1",
      "hoverflyVersion": "v1.2.0",
      "timeExported": "2020-04-25T17:56:32+03:00"
   }
}











          

      

      

    

  

  
    
    
    Basic delay simulation
    
    

    

    

    

    
 
  
  

    
      
          
            
  
Basic delay simulation

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	{
   "data": {
      "pairs": [
         {
            "request": {
               "destination": [
                  {
                     "matcher": "glob",
                     "value": "*"
                  }
               ]
            },
            "response": {
               "status": 200,
               "body": "Delayed response",
               "encodedBody": false,
               "headers": {
                  "Hoverfly": [
                     "Was-Here"
                  ]
               },
               "templated": false
            }
         }
      ],
      "globalActions": {
         "delays": [
            {
               "urlPattern": ".",
               "httpMethod": "",
               "delay": 2000
            }
         ],
         "delaysLogNormal": []
      }
   },
   "meta": {
      "schemaVersion": "v5.1",
      "hoverflyVersion": "v1.2.0",
      "timeExported": "2020-04-25T17:56:32+03:00"
   }
}











          

      

      

    

  

  
    
    
    GET method delay simulation
    
    

    

    

    

    
 
  
  

    
      
          
            
  
GET method delay simulation

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	{
   "data": {
      "pairs": [
         {
            "request": {
               "destination": [
                  {
                     "matcher": "glob",
                     "value": "*"
                  }
               ]
            },
            "response": {
               "status": 200,
               "body": "Delayed response",
               "encodedBody": false,
               "headers": {
                  "Hoverfly": [
                     "Was-Here"
                  ]
               },
               "templated": false
            }
         }
      ],
      "globalActions": {
         "delays": [
            {
               "urlPattern": "echo\\.jsontest\\.com\\/b\\/c",
               "httpMethod": "GET",
               "delay": 2000
            }
         ],
         "delaysLogNormal": []
      }
   },
   "meta": {
      "schemaVersion": "v5.1",
      "hoverflyVersion": "v1.2.0",
      "timeExported": "2020-04-25T17:56:32+03:00"
   }
}











          

      

      

    

  

  
    
    
    Basic simulation
    
    

    

    

    

    
 
  
  

    
      
          
            
  
Basic simulation

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

	{
   "data": {
      "pairs": [
         {
            "request": {
               "destination": [
                  {
                     "matcher": "exact",
                     "value": "docs.hoverfly.io"
                  }
               ]
            },
            "response": {
               "status": 200,
               "body": "Response from docs.hoverfly.io/pages/keyconcepts/templates.html",
               "encodedBody": false,
               "headers": {
                  "Hoverfly": [
                     "Was-Here"
                  ]
               },
               "templated": false
            }
         },
         {
            "request": {
               "destination": [
                  {
                     "matcher": "glob",
                     "value": "*.hoverfly.io"
                  }
               ]
            },
            "response": {
               "status": 200,
               "body": "Response from docs.hoverfly.io/pages/keyconcepts/templates.html",
               "encodedBody": false,
               "headers": {
                  "Hoverfly": [
                     "Was-Here"
                  ]
               },
               "templated": false
            }
         },
         {
            "request": {
               "destination": [
                  {
                     "matcher": "glob",
                     "value": "*.hoverfly.io"
                  },
                  {
                     "matcher": "regex",
                     "value": "(\\Ad)"
                  }
               ]
            },
            "response": {
               "status": 200,
               "body": "Response from docs.hoverfly.io/pages/keyconcepts/templates.html",
               "encodedBody": false,
               "headers": {
                  "Hoverfly": [
                     "Was-Here"
                  ]
               },
               "templated": false
            }
         }
      ],
      "globalActions": {
         "delays": [],
         "delaysLogNormal": []
      }
   },
   "meta": {
      "schemaVersion": "v5.1",
      "hoverflyVersion": "v1.2.0",
      "timeExported": "2020-04-25T17:56:32+03:00"
   }
}











          

      

      

    

  

  
    
    
    Basic simulation
    
    

    

    

    

    
 
  
  

    
      
          
            
  
Basic simulation

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

	{
   "data": {
      "pairs": [
         {
            "request": {
               "path": [
                  {
                     "matcher": "exact",
                     "value": "/pages/keyconcepts/templates.html"
                  }
               ],
               "method": [
                  {
                     "matcher": "exact",
                     "value": "GET"
                  }
               ],
               "destination": [
                  {
                     "matcher": "exact",
                     "value": "docs.hoverfly.io"
                  }
               ],
               "scheme": [
                  {
                     "matcher": "exact",
                     "value": "http"
                  }
               ],
               "body": [
                  {
                     "matcher": "exact",
                     "value": ""
                  }
               ],
               "query": {
                  "query": [
                     {
                        "matcher": "exact",
                        "value": "true"
                     }
                  ]
               }
            },
            "response": {
               "status": 200,
               "body": "Response from docs.hoverfly.io/pages/keyconcepts/templates.html",
               "encodedBody": false,
               "headers": {
                  "Hoverfly": [
                     "Was-Here"
                  ]
               },
               "templated": false
            }
         }
      ],
      "globalActions": {
         "delays": [],
         "delaysLogNormal": []
      }
   },
   "meta": {
      "schemaVersion": "v5.1",
      "hoverflyVersion": "v1.2.0",
      "timeExported": "2020-04-25T17:56:32+03:00"
   }
}











          

      

      

    

  

  
    
    
    Multiple hosts delay simulation
    
    

    

    

    

    
 
  
  

    
      
          
            
  
Multiple hosts delay simulation

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	{
   "data": {
      "pairs": [
         {
            "request": {
               "destination": [
                  {
                     "matcher": "glob",
                     "value": "*"
                  }
               ]
            },
            "response": {
               "status": 200,
               "body": "Delayed response",
               "encodedBody": false,
               "headers": {
                  "Hoverfly": [
                     "Was-Here"
                  ]
               },
               "templated": false
            }
         }
      ],
      "globalActions": {
         "delays": [
            {
               "urlPattern": "time\\.jsontest\\.com",
               "httpMethod": "",
               "delay": 1000
            },
            {
               "urlPattern": "date\\.jsontest\\.com",
               "httpMethod": "",
               "delay": 2000
            }
         ],
         "delaysLogNormal": []
      }
   },
   "meta": {
      "schemaVersion": "v5.1",
      "hoverflyVersion": "v1.2.0",
      "timeExported": "2020-04-25T17:56:32+03:00"
   }
}











          

      

      

    

  

  
    
    
    Log-normal delay simulation
    
    

    

    

    

    
 
  
  

    
      
          
            
  
Log-normal delay simulation

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	{
   "data": {
      "pairs": [
         {
            "request": {
               "destination": [
                  {
                     "matcher": "glob",
                     "value": "*"
                  }
               ]
            },
            "response": {
               "status": 200,
               "body": "Delayed response",
               "encodedBody": false,
               "headers": {
                  "Hoverfly": [
                     "Was-Here"
                  ]
               },
               "templated": false
            }
         }
      ],
      "globalActions": {
         "delaysLogNormal": [
            {
               "urlPattern": ".",
               "httpMethod": "",
               "min": 100,
               "max": 10000,
               "mean": 5000,
               "median": 500
            }
         ]
      }
   },
   "meta": {
      "schemaVersion": "v5",
      "hoverflyVersion": "v0.17.0",
      "timeExported": "2018-06-04T10:29:57+01:00"
   }
}











          

      

      

    

  
_static/down-pressed.png





_static/minus.png





_static/comment.png





_images/proxyconfigs.mermaid.png
clienta —\ /— server a

clientb ——— proxy server b

client ... / \— server ...






_static/file.png





_images/capture.mermaid.png
Client appiication

Client appiication

Extemal service.

Extemal service.





_images/proxyserver.mermaid.png
dlient

dlient





_images/logo-large.png
v JHoverFly





nav.xhtml

    
      Table of Contents


      
        		What is Hoverfly?


        		Introduction
          
          		Motivation


          		Download and installation
            
            		Homebrew (MacOS)


            		Docker


            		Kubernetes


            


          


          		Getting Start